1
|
Biswas D, Banerjee T, Kurths J. Effect of filtered feedback on birhythmicity: Suppression of birhythmic oscillation. Phys Rev E 2019; 99:062210. [PMID: 31330633 DOI: 10.1103/physreve.99.062210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 11/07/2022]
Abstract
The birhythmic oscillation, generally known as birhythmicity, arises in a plethora of physical, chemical, and biological systems. In this paper we investigate the effect of filtered feedback on birhythmicity as both are relevant in many living and engineering systems. We show that the presence of a low-pass filter in the feedback path of a birhythmic system suppresses birhythmicity and supports monorhythmic oscillations depending on the filtering parameter. Using harmonic decomposition and energy balance methods we determine the conditions for which birhythmicity is removed. We carry out a detailed bifurcation analysis to unveil the mechanism behind the quenching of birhythmic oscillations. Finally, we demonstrate our theoretical findings in analog simulation with electronic circuit. This study may have practical applications in quenching birhythmicity in several biochemical and physical systems.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Physics, Rampurhat College, Birbhum 731224, West Bengal, India
| | - Tanmoy Banerjee
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, D-14415 Potsdam, Germany.,Institute of Physics, Humboldt University Berlin, D-12489 Berlin, Germany
| |
Collapse
|
2
|
Ticcinelli V, Stankovski T, Iatsenko D, Bernjak A, Bradbury AE, Gallagher AR, Clarkson PBM, McClintock PVE, Stefanovska A. Coherence and Coupling Functions Reveal Microvascular Impairment in Treated Hypertension. Front Physiol 2017; 8:749. [PMID: 29081750 PMCID: PMC5645539 DOI: 10.3389/fphys.2017.00749] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/14/2017] [Indexed: 01/02/2023] Open
Abstract
The complex interactions that give rise to heart rate variability (HRV) involve coupled physiological oscillators operating over a wide range of different frequencies and length-scales. Based on the premise that interactions are key to the functioning of complex systems, the time-dependent deterministic coupling parameters underlying cardiac, respiratory and vascular regulation have been investigated at both the central and microvascular levels. Hypertension was considered as an example of a globally altered state of the complex dynamics of the cardiovascular system. Its effects were established through analysis of simultaneous recordings of the electrocardiogram (ECG), respiratory effort, and microvascular blood flow [by laser Doppler flowmetry (LDF)]. The signals were analyzed by methods developed to capture time-dependent dynamics, including the wavelet transform, wavelet-based phase coherence, non-linear mode decomposition, and dynamical Bayesian inference, all of which can encompass the inherent frequency and coupling variability of living systems. Phases of oscillatory modes corresponding to the cardiac (around 1.0 Hz), respiratory (around 0.25 Hz), and vascular myogenic activities (around 0.1 Hz) were extracted and combined into two coupled networks describing the central and peripheral systems, respectively. The corresponding spectral powers and coupling functions were computed. The same measurements and analyses were performed for three groups of subjects: healthy young (Y group, 24.4 ± 3.4 y), healthy aged (A group, 71.1 ± 6.6 y), and aged treated hypertensive patients (ATH group, 70.3 ± 6.7 y). It was established that the degree of coherence between low-frequency oscillations near 0.1 Hz in blood flow and in HRV time series differs markedly between the groups, declining with age and nearly disappearing in treated hypertension. Comparing the two healthy groups it was found that the couplings to the cardiac rhythm from both respiration and vascular myogenic activity decrease significantly in aging. Comparing the data from A and ATH groups it was found that the coupling from the vascular myogenic activity is significantly weaker in treated hypertension subjects, implying that the mechanisms of microcirculation are not completely restored by current anti-hypertension medications.
Collapse
Affiliation(s)
| | - Tomislav Stankovski
- Physics Department, Lancaster University, Lancaster, United Kingdom
- Faculty of Medicine, Saints Cyril and Methodius University of Skopje, Skopje, Macedonia
| | - Dmytro Iatsenko
- Physics Department, Lancaster University, Lancaster, United Kingdom
- Deutsche Bank AG, London, United Kingdom
| | - Alan Bernjak
- Physics Department, Lancaster University, Lancaster, United Kingdom
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Adam E. Bradbury
- Physics Department, Lancaster University, Lancaster, United Kingdom
| | | | | | | | | |
Collapse
|
3
|
Stankovski T. Time-varying coupling functions: Dynamical inference and cause of synchronization transitions. Phys Rev E 2017; 95:022206. [PMID: 28297889 DOI: 10.1103/physreve.95.022206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/29/2022]
Abstract
Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.
Collapse
Affiliation(s)
- Tomislav Stankovski
- Faculty of Medicine, Ss Cyril and Methodius University, 50 Divizija 6, Skopje 1000, Macedonia and Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
4
|
Mazzucco CE, Marchi A, Bari V, De Maria B, Guzzetti S, Raimondi F, Catena E, Ottolina D, Amadio C, Cravero S, Fossali T, Colombo R, Porta A. Mechanical ventilatory modes and cardioventilatory phase synchronization in acute respiratory failure patients. Physiol Meas 2017; 38:895-911. [PMID: 28052047 DOI: 10.1088/1361-6579/aa56ae] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardioventilatory phase synchronization was studied in ten critically ill patients admitted in intensive care unit (ICU) for acute respiratory failure under two mechanical ventilatory modes: (i) pressure controlled ventilation (PCV); (ii) pressure support ventilation (PSV). The two modalities were administered to the same patient in different times in a random order. Cardioventilatory phase interactions were typified by plotting the relative position of a heartbeat, detected from the electrocardiogram and collected in n groups, within m ventilatory cycles as a function of the progressive cardiac beat number via the synchrogram. n:m phase synchronized patterns were detected by computing the variability of each phase group. The percent duration of the recording featuring phase synchronization was assessed as a measure of the strength of phase synchrony and tested against situations of full phase desynchronization between cardiac and ventilatory rhythms. Indexes quantifying the variability of the cardiac and ventilatory activities were computed as well. Findings proved that: (i) a significant presence of n:m phase synchronized patterns was detected in PCV; (ii) the strength of n:m phase synchronization was stronger during PCV than PSV; (iii) different strengths of cardioventilatory phase synchronization detected during PCV and PSV were found in presence of similar heart and ventilatory rates and alike variability. We conclude that mechanical ventilation can induce a significant presence of cardioventilatory phase synchronized patterns and this amount depends on the mode of mechanical ventilation. Future studies should test the eventual link of the level of phase coordination between heart and mechanical ventilation to a clinical outcome to understand whether featuring a certain degree of cardioventilatory phase synchronization is beneficial for the critical patient in ICU.
Collapse
Affiliation(s)
- Claudio Enrico Mazzucco
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
English LQ, Mertens D, Abdoulkary S, Fritz CB, Skowronski K, Kevrekidis PG. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators. Phys Rev E 2016; 94:062212. [PMID: 28085391 DOI: 10.1103/physreve.94.062212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 06/06/2023]
Abstract
We derive the Kuramoto-Sakaguchi model from the basic circuit equations governing two coupled Wien-bridge oscillators. A Wien-bridge oscillator is a particular realization of a tunable autonomous oscillator that makes use of frequency filtering (via an RC bandpass filter) and positive feedback (via an operational amplifier). In the past few years, such oscillators have started to be utilized in synchronization studies. We first show that the Wien-bridge circuit equations can be cast in the form of a coupled pair of van der Pol equations. Subsequently, by applying the method of multiple time scales, we derive the differential equations that govern the slow evolution of the oscillator phases and amplitudes. These equations are directly reminiscent of the Kuramoto-Sakaguchi-type models for the study of synchronization. We analyze the resulting system in terms of the existence and stability of various coupled oscillator solutions and explain on that basis how their synchronization emerges. The phase-amplitude equations are also compared numerically to the original circuit equations and good agreement is found. Finally, we report on experimental measurements of two coupled Wien-bridge oscillators and relate the results to the theoretical predictions.
Collapse
Affiliation(s)
- L Q English
- Department of Physics and Astronomy, Dickinson College, Carlisle, Pennsylvania 17013, USA
| | - David Mertens
- Department of Physics, Eckerd College, St. Petersburg, Florida 33711, USA
| | - Saidou Abdoulkary
- Department of Physics and Astronomy, Dickinson College, Carlisle, Pennsylvania 17013, USA
- Département des Sciences Fondamentales, de Droit et des Humanités, IMIP University of Maroua, P.O. Box 46, Maroua, Cameroon
- Laboratory of Mechanics, Department of Physics, University of Yaoundé I, Yaoundé, Cameroon
| | - C B Fritz
- Department of Physics and Astronomy, Dickinson College, Carlisle, Pennsylvania 17013, USA
| | - K Skowronski
- Department of Physics and Astronomy, Dickinson College, Carlisle, Pennsylvania 17013, USA
| | - P G Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
6
|
Torres F, Uranga A, Riverola M, Sobreviela G, Barniol N. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors. SENSORS 2016; 16:s16101690. [PMID: 27754377 PMCID: PMC5087478 DOI: 10.3390/s16101690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 11/18/2022]
Abstract
Micro and nano electromechanical resonators have been widely used as single or multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization phenomena in multiple MEMS resonators have become an important issue because they allow frequency stability improvement, thereby preserving mass responsivity. The authors present an array of five cantilevers (CMOS-MEMS system) that are forced to vibrate synchronously to enhance their frequency stability. The frequency stability has been determined in closed-loop configuration for long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1 s averaging time) for a 1 MHz cantilever array MEMS system was obtained at the synchronized mode, which represents a 23-fold improvement in comparison with the non-synchronized operation mode (0.3 ppm).
Collapse
Affiliation(s)
- Francesc Torres
- Electrical Engineering Department, Universitat Autònoma de Barcelona, Edifici Q, Campus UAB Bellaterra, Cerdanyola del Vallès 08193, Spain.
| | - Arantxa Uranga
- Electrical Engineering Department, Universitat Autònoma de Barcelona, Edifici Q, Campus UAB Bellaterra, Cerdanyola del Vallès 08193, Spain.
| | - Martí Riverola
- Electrical Engineering Department, Universitat Autònoma de Barcelona, Edifici Q, Campus UAB Bellaterra, Cerdanyola del Vallès 08193, Spain.
| | - Guillermo Sobreviela
- Electrical Engineering Department, Universitat Autònoma de Barcelona, Edifici Q, Campus UAB Bellaterra, Cerdanyola del Vallès 08193, Spain.
| | - Núria Barniol
- Electrical Engineering Department, Universitat Autònoma de Barcelona, Edifici Q, Campus UAB Bellaterra, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
7
|
Sendiña-Nadal I, Boccaletti S, Letellier C. Observability coefficients for predicting the class of synchronizability from the algebraic structure of the local oscillators. Phys Rev E 2016; 94:042205. [PMID: 27841469 DOI: 10.1103/physreve.94.042205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Understanding the conditions under which a collective dynamics emerges in a complex network is still an open problem. A useful approach is the master stability function-and its related classes of synchronization-which offers a necessary condition to assess when a network successfully synchronizes. Observability coefficients, on the other hand, quantify how well the original state space of a system can be observed given only the access to a measured variable. The question is therefore pertinent: Given a generic dynamical system (represented by a state variable x) and given a generic measure on it h(x) (which may be either an observation of an external agent, or an output function through which the units of a network interact), are classes of synchronization and observability actually related to each other? We explicitly address this issue, and show a series of nontrivial relationships for networks of different popular chaotic systems (Rössler, Lorenz, and Hindmarsh-Rose oscillators). Our results suggest that specific dynamical properties can be evoked for explaining the classes of synchronizability.
Collapse
Affiliation(s)
- Irene Sendiña-Nadal
- Complex Systems Group, Universidad Rey Juan Carlos, E-28933 Móstoles, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Madrid, Spain
| | - Stefano Boccaletti
- CNR-Institute of Complex Systems, Via Madonna del Piano, 10, I-50019 Sesto Fiorentino, Florence, Italy.,Italian Embassy in Israel, 25 Hamered Street, 68125 Tel Aviv, Israel
| | - Christophe Letellier
- CORIA UMR 6614-Normandie Université, CNRS et INSA de Rouen, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France
| |
Collapse
|
8
|
Rings T, Lehnertz K. Distinguishing between direct and indirect directional couplings in large oscillator networks: Partial or non-partial phase analyses? CHAOS (WOODBURY, N.Y.) 2016; 26:093106. [PMID: 27781446 DOI: 10.1063/1.4962295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.
Collapse
Affiliation(s)
- Thorsten Rings
- Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| |
Collapse
|
9
|
Ghosh D, Banerjee T, Kurths J. Revival of oscillation from mean-field-induced death: Theory and experiment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052908. [PMID: 26651763 DOI: 10.1103/physreve.92.052908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Indexed: 06/05/2023]
Abstract
The revival of oscillation and maintaining rhythmicity in a network of coupled oscillators offer an open challenge to researchers as the cessation of oscillation often leads to a fatal system degradation and an irrecoverable malfunctioning in many physical, biological, and physiological systems. Recently a general technique of restoration of rhythmicity in diffusively coupled networks of nonlinear oscillators has been proposed in Zou et al. [Nat. Commun. 6, 7709 (2015)], where it is shown that a proper feedback parameter that controls the rate of diffusion can effectively revive oscillation from an oscillation suppressed state. In this paper we show that the mean-field diffusive coupling, which can suppress oscillation even in a network of identical oscillators, can be modified in order to revoke the cessation of oscillation induced by it. Using a rigorous bifurcation analysis we show that, unlike other diffusive coupling schemes, here one has two control parameters, namely the density of the mean-field and the feedback parameter that can be controlled to revive oscillation from a death state. We demonstrate that an appropriate choice of density of the mean field is capable of inducing rhythmicity even in the presence of complete diffusion, which is a unique feature of this mean-field coupling that is not available in other coupling schemes. Finally, we report the experimental observation of revival of oscillation from the mean-field-induced oscillation suppression state that supports our theoretical results.
Collapse
Affiliation(s)
- Debarati Ghosh
- Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Tanmoy Banerjee
- Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, D-14415 Potsdam, Germany
- Institute of Physics, Humboldt University Berlin, D-12489 Berlin, Germany
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
- Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
10
|
Song Z, Wu Y, Liu W, Xiao J. Experimental study of the irrational phase synchronization of coupled nonidentical mechanical metronomes. PLoS One 2015; 10:e0118986. [PMID: 25786222 PMCID: PMC4364733 DOI: 10.1371/journal.pone.0118986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Abstract
It has recently been observed in numerical simulations that the phases of two coupled nonlinear oscillators can become locked into an irrational ratio, exhibiting the phenomenon of irrational phase synchronization (IPS) [Phys. Rev. E 69, 056228 (2004)]. Here, using two coupled nonidentical periodic mechanical metronomes, we revisit this interesting phenomenon through experimental studies. It is demonstrated that under suitable couplings, the phases of the metronomes indeed can become locked into irrational ratios. Numerical simulations confirm the experimental observations and also reveal that in the IPS state, the system dynamics are chaotic. Our studies provide a solid step toward further studies of IPS.
Collapse
Affiliation(s)
- Zhiwen Song
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Ye Wu
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Weiqing Liu
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Jinghua Xiao
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- * E-mail:
| |
Collapse
|