1
|
Li H, Liu J, Li C, Du L. Vibrational resonance and chaos control in the canonical Chua's circuit with a smooth nonlinear resistor. Sci Rep 2024; 14:31013. [PMID: 39730851 DOI: 10.1038/s41598-024-82250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Vibrational resonance and chaos control in the canonical Chua's circuit with a smooth cubic nonlinear resistor is investigated by an analog circuit experiment and a dynamical model. By adjusting the amplitude and frequency of the high-frequency signal while keeping other parameters constant, the system exhibits a resonant peak in its response to the weak low-frequency signal. Notably, when the amplitude of the high-frequency signal exceeds the critical threshold, the system undergoes a transition from a single-scroll chaotic attractor to a double-scroll chaotic attractor, marking the emergence of vibrational resonance. In particular, the maximum of the system's response amplitude is insusceptible when the frequency of the high-frequency signal varies over a broad range, which indicates the strong robustness of the vibrational resonance in the present system. The experimental results are coincident with the numerical simulations. This research has potential applications in chaos control and weak signal detection.
Collapse
Affiliation(s)
- Hao Li
- Department of Physics, Yunnan University, Kunming, 650500, China
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, China
| | - Jiangling Liu
- Department of Physics, Yunnan University, Kunming, 650500, China
| | - Chaorun Li
- Department of Physics, Yunnan University, Kunming, 650500, China
| | - Luchun Du
- Department of Physics, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
2
|
Ashokkumar P, Kabilan R, Sathish Aravindh M, Venkatesan A, Lakshmanan M. Harnessing vibrational resonance to identify and enhance input signals. CHAOS (WOODBURY, N.Y.) 2024; 34:013129. [PMID: 38252785 DOI: 10.1063/5.0169195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
We report the occurrence of vibrational resonance and the underlying mechanism in a simple piecewise linear electronic circuit, namely, the Murali-Lakshmanan-Chua circuit, driven by an additional biharmonic signal with widely different frequencies. When the amplitude of the high-frequency force is tuned, the resultant vibrational resonance is used to detect the low-frequency signal and also to enhance it into a high-frequency signal. Further, we also show that even when the low-frequency signal is changed from sine wave to square and sawtooth waves, vibrational resonance can be used to detect and enhance them into high-frequency signals. These behaviors, confirmed by experimental results, are illustrated with appropriate analytical and numerical solutions of the corresponding circuit equations describing the system. Finally, we also verify the signal detection in the above circuit even with the addition of noise.
Collapse
Affiliation(s)
- P Ashokkumar
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| | - R Kabilan
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - M Sathish Aravindh
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| | - A Venkatesan
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - M Lakshmanan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
3
|
Roy-Layinde TO, Vincent UE, Abolade SA, Popoola OO, Laoye JA, McClintock PVE. Vibrational resonances in driven oscillators with position-dependent mass. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200227. [PMID: 33455553 DOI: 10.1098/rsta.2020.0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 05/22/2023]
Abstract
The vibrational resonance (VR) phenomenon has received a great deal of research attention over the two decades since its introduction. The wide range of theoretical and experimental results obtained has, however, been confined to VR in systems with constant mass. We now extend the VR formalism to encompass systems with position-dependent mass (PDM). We consider a generalized classical counterpart of the quantum mechanical nonlinear oscillator with PDM. By developing a theoretical framework for determining the response amplitude of PDM systems, we examine and analyse their VR phenomenona, obtain conditions for the occurrence of resonances, show that the role played by PDM can be both inductive and contributory, and suggest that PDM effects could usefully be explored to maximize the efficiency of devices being operated in VR modes. Our analysis suggests new directions for the investigation of VR in a general class of PDM systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.
Collapse
Affiliation(s)
- T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - U E Vincent
- Department of Physical Sciences, Redeemer's University, P.M.B. 230 Ede, Nigeria
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - S A Abolade
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - O O Popoola
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| |
Collapse
|
4
|
Omoteso KA, Roy-Layinde TO, Laoye JA, Vincent UE, McClintock PVE. Acoustic vibrational resonance in a Rayleigh-Plesset bubble oscillator. ULTRASONICS SONOCHEMISTRY 2021; 70:105346. [PMID: 33011444 PMCID: PMC7786605 DOI: 10.1016/j.ultsonch.2020.105346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The phenomenon of vibrational resonance (VR) has been investigated in a Rayleigh-Plesset oscillator for a gas bubble oscillating in an incompressible liquid while driven by a dual-frequency force consisting of high-frequency, amplitude-modulated, weak, acoustic waves. The complex equation of the Rayleigh-Plesset bubble oscillator model was expressed as the dynamics of a classical particle in a potential well of the Liénard type, thus allowing us to use both numerical and analytic approaches to investigate the occurrence of VR. We provide clear evidence that an acoustically-driven bubble oscillates in a time-dependent single or double-well potential whose properties are determined by the density of the liquid and its surface tension. We show both theoretically and numerically that, besides the VR effect facilitated by the variation of the parameters on which the high-frequency depends, amplitude modulation, the properties of the liquid in which the gas bubble oscillates contribute significantly to the occurrence of VR. In addition, we discuss the observation of multiple resonances and their origin for the double-well case, as well as their connection to the low frequency, weak, acoustic force field.
Collapse
Affiliation(s)
- K A Omoteso
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - U E Vincent
- Department of Physical Sciences, Redeemer's University, P.M.B. 230, Ede, Nigeria; Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
5
|
Du L, Han R, Jiang J, Guo W. Entropic vibrational resonance. Phys Rev E 2020; 102:012149. [PMID: 32795083 DOI: 10.1103/physreve.102.012149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/10/2020] [Indexed: 05/22/2023]
Abstract
We demonstrate the existence of vibrational resonance associated with the presence of an uneven boundary. When the motion of a Brownian particle is confined in a region with an uneven boundary, constrained to a double cavity, a high-frequency signal may produce a peak in the spectral power amplification of the other low-frequency signal and therefore to the appearance of the vibrational resonance phenomenon. The mechanism of vibrational resonance in constrained boundaries is different from that in energetic potentials and is termed entropic vibrational resonance (EVR). The EVR can be observed even if the bias force is absent in any direction. Through careful analysis, we clarify two types of mechanisms of the EVR. The one mechanism is ascribed to the transition from a bistable system to a monostable system, and the other corresponds to the match between the escape rate and the natural frequency of the low-frequency signal. Our work merges the vibrational resonance with an uneven boundary, thus extending the scope of the vibrational resonance and shedding new light on the concept of resonance.
Collapse
Affiliation(s)
- Luchun Du
- Department of Physics, Yunnan University, Kunming 650091, China
- School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Ruoshui Han
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Jiahao Jiang
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Wei Guo
- School of Physical Science and Technology, Kunming University, Kunming 650214, China
| |
Collapse
|
6
|
Agaoglu SN, Calim A, Hövel P, Ozer M, Uzuntarla M. Vibrational resonance in a scale-free network with different coupling schemes. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.09.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Roy-Layinde TO, Laoye JA, Popoola OO, Vincent UE, McClintock PVE. Vibrational resonance in an inhomogeneous medium with periodic dissipation. Phys Rev E 2017; 96:032209. [PMID: 29346993 DOI: 10.1103/physreve.96.032209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 06/07/2023]
Abstract
The role of nonlinear dissipation in vibrational resonance (VR) is investigated in an inhomogeneous system characterized by a symmetric and spatially periodic potential and subjected to nonuniform state-dependent damping and a biharmonic driving force. The contributions of the parameters of the high-frequency signal to the system's effective dissipation are examined theoretically in comparison to linearly damped systems, for which the parameter of interest is the effective stiffness in the equation of slow vibration. We show that the VR effect can be enhanced by varying the nonlinear dissipation parameters and that it can be induced by a parameter that is shared by the damping inhomogeneity and the system potential. Furthermore, we have apparently identified the origin of the nonlinear-dissipation-enhanced response: We provide evidence of its connection to a Hopf bifurcation, accompanied by monotonic attractor enlargement in the VR regime.
Collapse
Affiliation(s)
- T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - O O Popoola
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - U E Vincent
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department of Physical Sciences, Redeemer's University, Ede, Nigeria
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
8
|
Zhu J, Kong C, Liu X. Subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model. Phys Rev E 2016; 94:032208. [PMID: 27739746 DOI: 10.1103/physreve.94.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 06/06/2023]
Abstract
We study the subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model. For the subthreshold situation, two cases where the stationary states are equilibrium point and limit cycle are considered, where different natures of vibrational resonance are observed via theoretical and numerical methods. Especially when the frequency of the high-frequency driving force is near the so-called canard-resonance frequency, the firing rate can be significantly enhanced at the presence of noise. For the suprathreshold situation, we show that the local maxima of the response amplitude are located at the transition boundaries of different phase-locking patterns. The minimal required forcing amplitudes of high-frequency signal of the firing onset are just multiples of the spiking frequency. Furthermore, phase portraits and time series show that the presence of the global maxima of the response results from not only the suprathreshold but also the subthreshold phase-locking modes. In spite of the distinct characteristics for two stationary states on subthreshold oscillation, the suprathreshold vibrational resonance showed no qualitative difference between the two cases.
Collapse
Affiliation(s)
- Jinjie Zhu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chen Kong
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xianbin Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
9
|
Roy-Layinde TO, Laoye JA, Popoola OO, Vincent UE. Analysis of vibrational resonance in bi-harmonically driven plasma. CHAOS (WOODBURY, N.Y.) 2016; 26:093117. [PMID: 27781458 DOI: 10.1063/1.4962403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The phenomenon of vibrational resonance (VR) is examined and analyzed in a bi-harmonically driven two-fluid plasma model with nonlinear dissipation. An equation for the slow oscillations of the system is analytically derived in terms of the parameters of the fast signal using the method of direct separation of motion. The presence of a high frequency externally applied electric field is found to significantly modify the system's dynamics, and consequently, induce VR. The origin of the VR in the plasma model has been identified, not only from the effective plasma potential but also from the contributions of the effective nonlinear dissipation. Beside several dynamical changes, including multiple symmetry-breaking bifurcations, attractor escapes, and reversed period-doubling bifurcations, numerical simulations also revealed the occurrence of single and double resonances induced by symmetry breaking bifurcations.
Collapse
Affiliation(s)
- T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - O O Popoola
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - U E Vincent
- Department of Physical Sciences, Redeemers' University, Ede, Nigeria
| |
Collapse
|