Guo S, Yang M, Han W, Yang J. Dynamics in two interacting subpopulations of nonidentical phase oscillators.
Phys Rev E 2021;
103:052208. [PMID:
34134272 DOI:
10.1103/physreve.103.052208]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/26/2021] [Indexed: 11/07/2022]
Abstract
Chimera states refer to the dynamical states in which the inherent symmetry of the system is broken. The system composed of two interacting identical subpopulations of phase oscillators provides a platform to study chimera states. In this system, different types of chimera states have been identified and the transitions between them have been investigated. However, the parameter space is not fully explored in this system. In this work, we study a system comprised of two interacting subpopulations of nonidentical phase oscillators. Through numerical simulations and theoretical analyses, we find three symmetry-reserving states, including incoherent state, in-phase synchronous state, and antiphase synchronous state, and three types of symmetry-breaking states, including in-phase chimera states, antiphase chimera states, and weak chimera states. The stability diagrams of these dynamical states are explored on different parameter planes and transition scenarios amongst these states are investigated. We find that the weak chimera states act as the bridge between in-phase and antiphase chimera states. We also observe the existence of a period-two chimera state, chaotic chimera state, and drifting chimera states.
Collapse