1
|
Fava G, Gambassi A, Ginelli F. Strong Casimir-like Forces in Flocking Active Matter. PHYSICAL REVIEW LETTERS 2024; 133:148301. [PMID: 39423381 DOI: 10.1103/physrevlett.133.148301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/20/2023] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
Confining in space the equilibrium fluctuations of statistical systems with long-range correlations is known to result into effective forces on the boundaries. Here we demonstrate the occurrence of Casimir-like forces in the nonequilibrium context provided by flocking active matter. In particular, we consider a system of aligning self-propelled particles in two spatial dimensions that are transversally confined by reflecting or partially reflecting walls. We show that in the ordered flocking phase this confined active vectorial fluid is characterized by extensive boundary layers, as opposed to the finite ones usually observed in confined scalar active matter. Moreover, a finite-size, fluctuation-induced contribution to the pressure on the wall emerges, which decays slowly and algebraically upon increasing the distance between the walls. We explain our findings-which display a certain degree of universality-within a hydrodynamic description of the density and velocity fields.
Collapse
|
2
|
Pour Haddadan FK. The Casimir-like effect induced by active nematics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:455101. [PMID: 39129644 DOI: 10.1088/1361-648x/ad69f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
We consider an active nematic phase and use hydrodynamical equations of it to model the activity as an internal field. The interaction of this field with the nematic director in a confined geometry is included in the Hamiltonian of the system. Based on this model Hamiltonian and the standard field theoretical approach, the Casimir-like force induced between the boundaries of such a confined film is discussed. The force depends on the geometrical shape and the dynamical character of the constituents of our active phase, as well as the anchoring conditions. For homeotropically aligned rod-like particles which in principle tend to align along a planar flow field, extensile activity enhances the attraction present in a thin nematic film. As the film thickness increases the force reduces. Beyond a critical thickness, a planar flow field instantaneous to a bend distortion sets in. Near but below the threshold of this activity-induced instability, the force crosses zero and repulsively diverges right at the critical threshold of this so-called flow instability. For contractile rods, in the same geometry as above, the structure is stable and the Casimir-like force diminishes by an exponential factor as a function of the film thickness. On the other side for a planar director alignment, rod-like contractile particles can induce opposite shear flows at the boundaries creating a splay distortion for the director between the plates. In this configuration, we obtain the same universal pretransitional behavior for the force as above. Vice versa, for extensile rod-like particles in this geometry, the director fluctuations become massive and the Casimir-like force diminishes again by an exponential factor as the film thickness increases. The effect of the active field on thermal fluctuations of the director and the fluctuation-induced Casimir force per area is derived through a "semi"-dynamical approach as well. However, the results of the calculation due to a mathematical sum over the fluctuating modes do not lead to an approved closed form.
Collapse
|
3
|
Dantchev D. On Casimir and Helmholtz Fluctuation-Induced Forces in Micro- and Nano-Systems: Survey of Some Basic Results. ENTROPY (BASEL, SWITZERLAND) 2024; 26:499. [PMID: 38920508 PMCID: PMC11202628 DOI: 10.3390/e26060499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Fluctuations are omnipresent; they exist in any matter, due either to its quantum nature or to its nonzero temperature. In the current review, we briefly cover the quantum electrodynamic Casimir (QED) force as well as the critical Casimir (CC) and Helmholtz (HF) forces. In the QED case, the medium is usually a vacuum and the massless excitations are photons, while in the CC and HF cases the medium is usually a critical or correlated fluid and the fluctuations of the order parameter are the cause of the force between the macroscopic or mesoscopic bodies immersed in it. We discuss the importance of the presented results for nanotechnology, especially for devising and assembling micro- or nano-scale systems. Several important problems for nanotechnology following from the currently available experimental findings are spelled out, and possible strategies for overcoming them are sketched. Regarding the example of HF, we explicitly demonstrate that when a given integral quantity characterizing the fluid is conserved, it has an essential influence on the behavior of the corresponding fluctuation-induced force.
Collapse
Affiliation(s)
- Daniel Dantchev
- Institute of Mechanics, Bulgarian Academy of Sciences, Academic Georgy Bonchev St., Building 4, 1113 Sofia, Bulgaria;
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
| |
Collapse
|
4
|
Batton CH, Rotskoff GM. Microscopic origin of tunable assembly forces in chiral active environments. SOFT MATTER 2024; 20:4111-4126. [PMID: 38726733 DOI: 10.1039/d4sm00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Across a variety of spatial scales, from nanoscale biological systems to micron-scale colloidal systems, equilibrium self-assembly is entirely dictated by-and therefore limited by-the thermodynamic properties of the constituent materials. In contrast, nonequilibrium materials, such as self-propelled active matter, expand the possibilities for driving the assemblies that are inaccessible in equilibrium conditions. Recently, a number of works have suggested that active matter drives or accelerates self-organization, but the emergent interactions that arise between solutes immersed in actively driven environments are complex and poorly understood. Here, we analyze and resolve two crucial questions concerning actively driven self-assembly: (i) how, mechanistically, do active environments drive self-assembly of passive solutes? (ii) Under which conditions is this assembly robust? We employ the framework of odd hydrodynamics to theoretically explain numerical and experimental observations that chiral active matter, i.e., particles driven with a directional torque, produces robust and long-ranged assembly forces. Together, these developments constitute an important step towards a comprehensive theoretical framework for controlling self-assembly in nonequilibrium environments.
Collapse
Affiliation(s)
- Clay H Batton
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Gambassi A, Dietrich S. Critical Casimir forces in soft matter. SOFT MATTER 2024; 20:3212-3242. [PMID: 38573318 DOI: 10.1039/d3sm01408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We review recent advances in the theoretical, numerical, and experimental studies of critical Casimir forces in soft matter, with particular emphasis on their relevance for the structures of colloidal suspensions and on their dynamics. Distinct from other interactions which act in soft matter, such as electrostatic and van der Waals forces, critical Casimir forces are effective interactions characterised by the possibility to control reversibly their strength via minute temperature changes, while their attractive or repulsive character is conveniently determined via surface treatments or by structuring the involved surfaces. These features make critical Casimir forces excellent candidates for controlling the equilibrium and dynamical properties of individual colloids or colloidal dispersions as well as for possible applications in micro-mechanical systems. In the past 25 years a number of theoretical and experimental studies have been devoted to investigating these forces primarily under thermal equilibrium conditions, while their dynamical and non-equilibrium behaviour is a largely unexplored subject open for future investigations.
Collapse
Affiliation(s)
- A Gambassi
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy.
| | - S Dietrich
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| |
Collapse
|
6
|
Tarr SW, Brunner JS, Soto D, Goldman DI. Probing Hydrodynamic Fluctuation-Induced Forces with an Oscillating Robot. PHYSICAL REVIEW LETTERS 2024; 132:084001. [PMID: 38457731 DOI: 10.1103/physrevlett.132.084001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 01/16/2024] [Indexed: 03/10/2024]
Abstract
We study the dynamics of an oscillating, free-floating robot that generates radially expanding gravity-capillary waves at a fluid surface. In open water, the device does not self-propel; near a rigid boundary, it can be attracted or repelled. Visualization of the wave field dynamics reveals that when near a boundary, a complex interference of generated and reflected waves induces a wave amplitude fluctuation asymmetry. Attraction increases as wave frequency increases or robot-boundary separation decreases. Theory on confined gravity-capillary wave radiation dynamics developed by Hocking in the 1980s captures the observed parameter dependence due to these "Hocking fields." The flexibility of the robophysical system allows detailed characterization and analysis of locally generated nonequilibrium fluctuation-induced forces [M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999)RMPHAT0034-686110.1103/RevModPhys.71.1233].
Collapse
Affiliation(s)
- Steven W Tarr
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| | - Joseph S Brunner
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
- Department of Radiation Medicine, University of Kentucky, 800 Rose Street, Lexington, Kentucky 40536, USA
| | - Daniel Soto
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| | - Daniel I Goldman
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| |
Collapse
|
7
|
Ning L, Lou X, Ma Q, Yang Y, Luo N, Chen K, Meng F, Zhou X, Yang M, Peng Y. Hydrodynamics-Induced Long-Range Attraction between Plates in Bacterial Suspensions. PHYSICAL REVIEW LETTERS 2023; 131:158301. [PMID: 37897752 DOI: 10.1103/physrevlett.131.158301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/23/2023] [Indexed: 10/30/2023]
Abstract
We perform optical-tweezers experiments and mesoscale fluid simulations to study the effective interactions between two parallel plates immersed in bacterial suspensions. The plates are found to experience a long-range attraction, which increases linearly with bacterial density and decreases with plate separation. The higher bacterial density and orientation order between plates observed in the experiments imply that the long-range effective attraction mainly arises from the bacterial flow field, instead of the direct bacterium-plate collisions, which is confirmed by the simulations. Furthermore, the hydrodynamic contribution is inversely proportional to the squared interplate separation in the far field. Our findings highlight the importance of hydrodynamics on the effective forces between passive objects in active baths, providing new possibilities to control activity-directed assembly.
Collapse
Affiliation(s)
- Luhui Ning
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Xin Lou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Qili Ma
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaochen Yang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Luo
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Fanlong Meng
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yi Peng
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Kushwaha P, Semwal V, Maity S, Mishra S, Chikkadi V. Phase separation of passive particles in active liquids. Phys Rev E 2023; 108:034603. [PMID: 37849120 DOI: 10.1103/physreve.108.034603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/03/2023] [Indexed: 10/19/2023]
Abstract
The transport properties of colloidal particles in active liquids have been studied extensively. It has led to a deeper understanding of the interactions between passive and active particles. However, the phase behavior of colloidal particles in active media has received little attention. Here, we present a combined experimental and numerical investigation of passive colloids dispersed in suspensions of active particles. Our study reveals dynamic clustering of colloids in active media due to an interplay of activity and attractive effective potential between the colloids. The strength of the effective potential is set by the size ratio of passive particles to the active ones. As the relative size of the passive particles increases, the effective potential becomes stronger and the average size of the clusters grows. The simulations reveal a macroscopic phase separation at sufficiently large size ratios. We will discuss the effect of density fluctuations of active particles on the nature of effective interactions between passive ones.
Collapse
Affiliation(s)
- Pragya Kushwaha
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Vivek Semwal
- Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sayan Maity
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU), Varanasi 221005, India
| | | |
Collapse
|
9
|
Bouvard J, Moisy F, Auradou H. Ostwald-like ripening in the two-dimensional clustering of passive particles induced by swimming bacteria. Phys Rev E 2023; 107:044607. [PMID: 37198759 DOI: 10.1103/physreve.107.044607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Clustering passive particles by active agents is a promising route for fabrication of colloidal structures. Here, we report the dynamic clustering of micrometric beads in a suspension of motile bacteria. We characterize the coarsening dynamics for various bead sizes, surface fractions, and bacterial concentrations. We show that the time scale τ for the onset of clustering is governed by the time of first encounter of diffusing beads. At large time (t≫τ), we observe a robust cluster growth as t^{1/3}, similar to the Ostwald ripening mechanism. From bead tracking measurements, we extract the short-range bacteria-induced attractive force at the origin of this clustering.
Collapse
Affiliation(s)
- J Bouvard
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| | - F Moisy
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| | - H Auradou
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| |
Collapse
|
10
|
Nogueira BP, Lavor IR, Muniz CR. Ribonucleic acid genome mutations induced by the Casimir effect. Biosystems 2023; 226:104888. [PMID: 36997148 PMCID: PMC10043983 DOI: 10.1016/j.biosystems.2023.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
In this paper, we investigate the Casimir effect within a virus RNA, particularizing the study to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Then, we discuss the possibility of occurring damage or mutation in its genome due to the presence of quantum vacuum fluctuations inside and around the RNA ribbon. For this, we consider the geometry and the nontrivial topology of the viral RNA as having a simple helical structure. We initially compute the non-thermal Casimir energy associated to that geometry, considering boundary conditions that constrain the zero point oscillations of a massless scalar field to the cylindrical cavity containing a helix pitch of RNA ribbon. Then we extend the obtained result to the electromagnetic field and, following, we calculate the probability of occurring damage or mutation in RNA by using the normalized inverse exponential distribution, which suppresses very low energies, and consider cutoff (threshold) energies corresponding to UV-A and UV-C rays, surely responsible by mutations. Then, by taking into account UV-A, we arrive at a mutation rate per base per infection cycle, which in the case of the SARS-CoV-2 is non-negligible. We find a maximum value of this mutation rate for an RNA ribbon radius, applying it for SARS-CoV-2, in particular. We also calculate a characteristic longitudinal oscillation frequency for the helix pitch value corresponding to the local minimum of the Casimir energy. Finally, we consider thermal fluctuations of classical and quantum nature and show that the corresponding probability of mutation is completely negligible for that virus. Therefore, we conclude that only the nontrivial topology and the geometric attributes of the RNA molecule contribute to the possible mutations caused by quantum vacuum fluctuations in the viral genome.
Collapse
Affiliation(s)
- B P Nogueira
- Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras de Iguatu, Iguatu, CE, Brazil.
| | - I R Lavor
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Pinheiro, Maranhão, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - C R Muniz
- Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras de Iguatu, Iguatu, CE, Brazil.
| |
Collapse
|
11
|
Hrishikesh B, Mani E. Collective behavior of passive and active circle swimming particle mixtures. SOFT MATTER 2023; 19:225-232. [PMID: 36510815 DOI: 10.1039/d2sm01066f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We present a numerical study on a binary mixture of passive and circle swimming, self-propelling particles which interact via the Lennard-Jones (LJ) potential in two dimensions. Using Brownian Dynamics (BD) simulations, we present state diagrams using the control parameters such as attraction strength, angular velocity, self-propulsion velocity and composition. In a symmetric mixture, the system undergoes a transition from a mixed gel to a rotating passive cluster state and finally to a homogeneous fluid state as translational activity increases. The formation of the rotating cluster of passive particles surrounded by active and passive monomers is attributed to the combined effect of composition, activity and strength of attraction of the active particles. Different phases are characterized using radial distribution functions, bond order parameters, cluster fraction and probability distribution of local volume fractions. The present study addresses comprehensively the intricate role of activity, angular velocity, inter-particle interaction and compositional variation on the phase behavior. The predictions presented in the study can be experimentally realized in synthetic colloidal swimmers and motile bacterial suspensions.
Collapse
Affiliation(s)
- Bhadra Hrishikesh
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Ethayaraja Mani
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| |
Collapse
|
12
|
Paul S, Jayaram A, Narinder N, Speck T, Bechinger C. Force Generation in Confined Active Fluids: The Role of Microstructure. PHYSICAL REVIEW LETTERS 2022; 129:058001. [PMID: 35960563 DOI: 10.1103/physrevlett.129.058001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
We experimentally determine the force exerted by a bath of active particles onto a passive probe as a function of its distance to a wall and compare it to the measured averaged density distribution of active particles around the probe. Within the framework of an active stress, we demonstrate that both quantities are-up to a factor-directly related to each other. Our results are in excellent agreement with a minimal numerical model and confirm a general and system-independent relationship between the microstructure of active particles and transmitted forces.
Collapse
Affiliation(s)
- Shuvojit Paul
- Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
| | - Ashreya Jayaram
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - N Narinder
- Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | | |
Collapse
|
13
|
Singh JP, Pattanayak S, Mishra S, Chakrabarti J. Effective single component description of steady state structures of passive particles in an active bath. J Chem Phys 2022; 156:214112. [DOI: 10.1063/5.0088259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We model a binary mixture of passive and active Brownian particles in two dimensions using the effective interaction between passive particles in the active bath. The activity of active particles and the size ratio of two types of particles are the two control parameters in the system. The effective interaction is calculated from the average force on two particles generated by the active particles. The effective interaction can be attractive or repulsive, depending on the system parameters. The passive particles form four distinct structural orders for different system parameters, viz., homogeneous structures, disordered cluster, ordered cluster, and crystalline structure. The change in structure is dictated by the change in nature of the effective interaction. We further confirm the four structures using a full microscopic simulation of active and passive mixture. Our study is useful to understand the different collective behavior in non-equilibrium systems.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sudipta Pattanayak
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, 95302 Cergy-Pontoise, France
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jaydeb Chakrabarti
- S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
14
|
A Hydrodynamic Analog of the Casimir Effect in Wave-Driven Turbulent Flows. FLUIDS 2022. [DOI: 10.3390/fluids7050155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We present experimental results on a fluctuation-induced force observed in Faraday wave-driven turbulence. As recently reported, a long-range attraction force arises between two walls that confine the wave-driven turbulent flow. In the Faraday waves system, the turbulent fluid motion is coupled with the disordered wave motion. This study describes the emergence of the fluctuation-induced force from the viewpoint of the wave dynamics. The wave amplitude is unaffected by the confinement while the wave erratic motion is. As the wall spacing decreases, the wave motion becomes less energetic and more anisotropic in the cavity formed by the walls, giving rise to a stronger attraction. These results clarify why the modelling of the attraction force in this system cannot be based on the wave amplitude but has to be built upon the wave-fluid motion coupling. When the wall spacing is comparable to the wavelength, an intermittent wave resonance is observed, and it leads to a complex short-range interaction. These results contribute to the study of aggregation processes in the presence of turbulence and its related problems such as the accumulation of plastic debris in coastal marine ecosystems or the modelling of planetary formation.
Collapse
|
15
|
Dikshit S, Mishra S. Activity-driven phase separation and ordering kinetics of passive particles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:21. [PMID: 35254517 DOI: 10.1140/epje/s10189-022-00174-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The steady state and phase ordering kinetics in a pure active Brownian particle system are studied in recent years. In binary mixture of active and passive Brownian particles passive particles are used as probe to understand the properties of active medium. In our present study, we study the mixture of passive and active Brownian particles. Here, we aim to understand the steady state and kinetics of small passive particles in the mixture. In our system, the passive particles are small in size and large in number, whereas ABPs are large in size and small in number. The system is studied on a two-dimensional substrate using overdamped Langevin dynamic simulation. The steady state and kinetics of passive particles are studied for various size and activity of active particles. Passive particles are purely athermal in nature and have dynamics only due to bigger ABPs. For small size ratio and activity, the passive particles remain homogeneous in the system, whereas on increasing size ratio and activity they form periodic hexagonal close pack (HCP) spanning clusters in the system. We have also studied the kinetics of growing passive particle clusters. The mass of the largest cluster shows a much slower growth kinetics in contrast to conserved growth kinetics in ABP system. Our study provides an understanding of steady state and kinetics of passive particles in the presence of bigger active particles. The mixture can be thought of as effect of big microorganism moving in passive medium.
Collapse
Affiliation(s)
- Shambhavi Dikshit
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
16
|
Gandikota MC, Cacciuto A. Effective forces between active polymers. Phys Rev E 2022; 105:034503. [PMID: 35428068 DOI: 10.1103/physreve.105.034503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The characterization of the interactions between two fully flexible self-avoiding polymers is one of the classic and most important problems in polymer physics. In this paper we measure these interactions in the presence of active fluctuations. We introduce activity into the problem using two of the most popular models in this field, one where activity is effectively embedded into the monomers' dynamics, and the other where passive polymers fluctuate in an explicit bath of active particles. We establish the conditions under which the interaction between active polymers can be mapped into the classical passive problem. We observe that the active bath can drive the development of strong attractive interactions between the polymers and that, upon enforcing a significant degree of overlap, they come together to form a single double-stranded unit. A phase diagram tracing this change in conformational behavior is also reported.
Collapse
Affiliation(s)
- M C Gandikota
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
17
|
Davoodianidalik M, Punzmann H, Kellay H, Xia H, Shats M, Francois N. Fluctuation-Induced Interaction in Turbulent Flows. PHYSICAL REVIEW LETTERS 2022; 128:024503. [PMID: 35089756 DOI: 10.1103/physrevlett.128.024503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Fluctuation-induced forces are observed in numerous physical systems spanning from quantum to macroscopic scale. However, there is as yet no experimental report of their existence in hydrodynamic turbulence. Here, we present evidence of an attraction force mediated via turbulent fluctuations by using two walls locally confining 2D turbulence. This long-range interaction is a function of the wall separation and the energy injection rate in the turbulent flow. As the wall spacing decreases, the confined flow becomes less energetic and more anisotropic in the bounded domain, producing stronger attraction. The mechanism of force generation is rooted in a nontrivial fluid-wall coupling where coherent flow structures are guided by the cavity walls. For the narrowest cavities studied, a resonance phenomenon at the flow forcing scale leads to a complex short-range interaction. The results could be relevant to problems encountered in a range of fields from industrial multiphase flows to modeling of planetary formation.
Collapse
Affiliation(s)
- M Davoodianidalik
- Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| | - H Punzmann
- Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| | - H Kellay
- Laboratoire Ondes et Matiere d'Aquitaine, UMR 5798, CNRS, Universite de Bordeaux, 33405 Talence, France
| | - H Xia
- Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| | - M Shats
- Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| | - N Francois
- Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
18
|
Ben Zion MY, Caba Y, Modin A, Chaikin PM. Cooperation in a fluid swarm of fuel-free micro-swimmers. Nat Commun 2022; 13:184. [PMID: 35013335 PMCID: PMC8748659 DOI: 10.1038/s41467-021-27870-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
While motile bacteria display rich dynamics in dense colonies, the phoretic nature of artificial micro-swimmers restricts their activity when crowded. Here we introduce a new class of synthetic micro-swimmers that are driven solely by light. By coupling a light absorbing particle to a fluid droplet we produce a colloidal chimera that transforms optical power into propulsive thermo-capillary action. The swimmers' internal drive allows them to operate for a long duration (days) and remain active when crowded, forming a high density fluid phase. We find that above a critical concentration, swimmers form a long lived crowded state that displays internal dynamics. When passive particles are introduced, the dense swimmer phase can re-arrange to spontaneously corral the passive particles. We derive a geometrical, depletion-like condition for corralling by identifying the role the passive particles play in controlling the effective concentration of the micro-swimmers.
Collapse
Affiliation(s)
- Matan Yah Ben Zion
- Center for Soft Matter Research, Department of Physics, New York University, 726 Broadway Avenue, New York, NY, 10003, USA.
- UMR Gulliver 7083 CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005, Paris, France.
| | - Yaelin Caba
- Center for Soft Matter Research, Department of Physics, New York University, 726 Broadway Avenue, New York, NY, 10003, USA
| | - Alvin Modin
- Center for Soft Matter Research, Department of Physics, New York University, 726 Broadway Avenue, New York, NY, 10003, USA
| | - Paul M Chaikin
- Center for Soft Matter Research, Department of Physics, New York University, 726 Broadway Avenue, New York, NY, 10003, USA
| |
Collapse
|
19
|
Sebtosheikh M, Naji A. Noncentral forces mediated between two inclusions in a bath of active Brownian rods. Sci Rep 2021; 11:23100. [PMID: 34845241 PMCID: PMC8630027 DOI: 10.1038/s41598-021-02295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Using Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that the self-propulsion axis of the rods may generally deviate from their longitudinal axis. When the self-propulsion is transverse (perpendicular to the rod axis), the accumulation of active rods around the inclusions is significantly enhanced, causing a more expansive steric layering (ring formation) of the rods around the inclusions, as compared with the reference case of longitudinally self-propelling rods. As a result, the transversally self-propelling rods also mediate a significantly longer ranged effective interaction between the inclusions. The bath-mediated interaction arises due to the overlaps between the active-rod rings formed around the inclusions, as they are brought into small separations. When the self-propulsion axis is tilted relative to the rod axis, we find an asymmetric imbalance of active-rod accumulation around the inclusion dimer. This leads to a noncentral interaction, featuring an anti-parallel pair of transverse force components and, hence, a bath-mediated torque on the dimer.
Collapse
Affiliation(s)
- Mahmoud Sebtosheikh
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran.
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran.
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran.
| |
Collapse
|
20
|
Forgács P, Libál A, Reichhardt C, Reichhardt CJO. Active matter shepherding and clustering in inhomogeneous environments. Phys Rev E 2021; 104:044613. [PMID: 34781504 DOI: 10.1103/physreve.104.044613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 11/07/2022]
Abstract
We consider a mixture of active and passive run-and-tumble disks in an inhomogeneous environment where only half of the sample contains quenched disorder or pinning. The disks are initialized in a fully mixed state of uniform density. We identify several distinct dynamical phases as a function of motor force and pinning density. At high pinning densities and high motor forces, there is a two-step process initiated by a rapid accumulation of both active and passive disks in the pinned region, which produces a large density gradient in the system. This is followed by a slower species phase separation process where the inactive disks are shepherded by the active disks into the pin-free region, forming a nonclustered fluid and producing a more uniform density with species phase separation. For higher pinning densities and low motor forces, the dynamics becomes very slow and the system maintains a strong density gradient. For weaker pinning and large motor forces, a floating clustered state appears, and the time-averaged density of the system is uniform. We illustrate the appearance of these phases in a dynamic phase diagram.
Collapse
Affiliation(s)
- P Forgács
- Mathematics and Computer Science Department, Babeş-Bolya University, Cluj 400084, Romania
| | - A Libál
- Mathematics and Computer Science Department, Babeş-Bolya University, Cluj 400084, Romania
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
21
|
Reichhardt C, Reichhardt CJO. Clogging, dynamics, and reentrant fluid for active matter on periodic substrates. Phys Rev E 2021; 103:062603. [PMID: 34271652 DOI: 10.1103/physreve.103.062603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
We examine the collective states of run-and-tumble active matter disks driven over a periodic obstacle array. When the drive is applied along a symmetry direction of the array, we find a clog-free uniform liquid state for low activity, while at higher activity, the density becomes increasingly heterogeneous and an active clogged state emerges in which the mobility is strongly reduced. For driving along nonsymmetry or incommensurate directions, there are two different clogging behaviors consisting of a drive-dependent clogged state in the low activity thermal limit and a drive-independent clogged state at high activity. These regimes are separated by a uniform flowing liquid at intermediate activity. There is a critical activity level above which the thermal clogged state does not occur, as well as an optimal activity level that maximizes the disk mobility. Thermal clogged states are dependent on the driving direction while active clogged states are not. In the low activity regime, diluting the obstacles produces a monotonic increase in the mobility; however, for large activities, the mobility is more robust against obstacle dilution. We also examine the velocity-force curves for driving along nonsymmetry directions and find that they are linear when the activity is low or intermediate but become nonlinear at high activity and show behavior similar to that found for the plastic depinning of solids. At higher drives, the active clustering is lost. For low activity, we also find a reentrant fluid phase, where the system transitions from a high mobility fluid at low drives to a clogged state at higher drives and then back into another fluid phase at very high drives. We map the regions in which the thermally clogged, partially clogged, active uniform fluid, clustered fluid, active clogged, and directionally locked states occur as a function of disk density, drift force, and activity.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
22
|
Mahdisoltani S, Golestanian R. Long-Range Fluctuation-Induced Forces in Driven Electrolytes. PHYSICAL REVIEW LETTERS 2021; 126:158002. [PMID: 33929248 DOI: 10.1103/physrevlett.126.158002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-like fluctuation-induced force between neutral boundaries that confine the ions; this force is controlled by the external electric field, and it can be both attractive and repulsive with similar boundary conditions, unlike other long-range fluctuation-induced forces. This work highlights the importance of nonequilibrium correlations in electrolytes and shows how they can be used to tune interactions between uncharged biological or synthetic structures at large separations.
Collapse
Affiliation(s)
- Saeed Mahdisoltani
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| |
Collapse
|
23
|
Semwal V, Dikshit S, Mishra S. Dynamics of a collection of active particles on a two-dimensional periodic undulated surface. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:20. [PMID: 33686531 DOI: 10.1140/epje/s10189-021-00044-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
We study the dynamics of circular disk-shaped active particles on a two-dimensional periodic undulated surface. Each particle has an internal energy mechanism which is modeled by an active friction force and it is controlled by an activity parameter [Formula: see text]. It acts as negative friction if the speed of the particle is smaller than [Formula: see text] and normal friction otherwise. Surface undulation is modeled by the periodic undulation of fixed amplitude and wavelength. The dynamics of the particle is studied for different activities and surface undulations (SU). Three types of particle dynamic is observed on varying activity and SU: confined, early time subdiffusion to diffusion and super diffusion to late time diffusion. An effective equilibrium is established by showing the Green-Kubo relation between the effective diffusivity and the velocity auto-correlation function for all activities and small SU.
Collapse
Affiliation(s)
- Vivek Semwal
- Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India.
| | - Shambhavi Dikshit
- Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| |
Collapse
|
24
|
Feng F, Lei T, Zhao N. Tunable depletion force in active and crowded environments. Phys Rev E 2021; 103:022604. [PMID: 33736064 DOI: 10.1103/physreve.103.022604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
We adopt two-dimensional Langevin dynamics simulations to study the effective interactions between two passive colloids in a bath crowded with active particles. We mainly pay attention to the significant effects of active particle size, crowding-activity coupling, and chirality. First, a transition of depletion force from repulsion to attraction is revealed by varying particle size. Moreover, larger active crowders with sufficient activity can generate strong attractive force, which is in contrast to the cage effect in passive media. It is interesting that the attraction induced by large active crowders follows a linear scaling with the persistence length of active particles. Second, the effective force also experiences a transition from repulsion to attraction as volume fraction increases, as a consequence of the competition between the two contrastive factors of activity and crowding. As bath volume fraction is relatively small, activity generates a dominant repulsion force, while as the bath becomes concentrated, crowding-induced attraction becomes overwhelming. Lastly, in a chiral bath, we observe a very surprising oscillation phenomenon of active depletion force, showing an evident quasiperiodic variation with increasing chirality. Aggregation of active particles in the vicinity of the colloids is carefully examined, which serves as a reasonable picture for our observations. Our findings provide an inspiring strategy for the tunable active depletion force by crowding, activity, and chirality.
Collapse
Affiliation(s)
- Fane Feng
- Department of Physical Chemistry, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ting Lei
- Department of Physical Chemistry, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Nanrong Zhao
- Department of Physical Chemistry, College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Kjeldbjerg CM, Brady JF. Theory for the Casimir effect and the partitioning of active matter. SOFT MATTER 2021; 17:523-530. [PMID: 33232432 DOI: 10.1039/d0sm01797c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Active Brownian particles (ABPs) distribute non-homogeneously near surfaces, and understanding how this depends on system properties-size, shape, activity level, etc.-is essential for predicting and exploiting the behavior of active matter systems. Active particles accumulate at no-flux surfaces owing to their persistent swimming, which depends on their intrinsic swim speed and reorientation time, and are subject to confinement effects when their run or persistence length is comparable to the characteristic size of the confining geometry. It has been observed in simulations that two parallel plates experience a "Casimir effect" and attract each other when placed in a dilute bath of ABPs. In this work, we provide a theoretical model based on the Smoluchowski equation and a macroscopic mechanical momentum balance to analytically predict this attractive force. We extend this method to describe the concentration partitioning of active particles between a confining channel and a reservoir, showing that the ratio of the concentration in the channel to that in the bulk increases as either run length increases or channel height decreases. The theoretical results agree well with Brownian dynamics simulations and finite element calculations.
Collapse
Affiliation(s)
- Camilla M Kjeldbjerg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
Maes C. Fluctuating Motion in an Active Environment. PHYSICAL REVIEW LETTERS 2020; 125:208001. [PMID: 33258620 DOI: 10.1103/physrevlett.125.208001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 06/12/2023]
Abstract
We derive the fluctuation dynamics of a probe in weak coupling with a living medium, modeled as particles undergoing an active Ornstein-Uhlenbeck dynamics. Nondissipative corrections to the fluctuation-dissipation relation are written out explicitly in terms of time correlations in the active medium. A first term changes the inertial mass of the probe as a consequence of the persistence of the active medium. A second correction modifies the friction kernel. The resulting generalized Langevin equation benchmarks the motion induced on probes immersed in active versus passive media. The derivation uses nonequilibrium response theory.
Collapse
Affiliation(s)
- Christian Maes
- Instituut voor Theoretische Fysica, KU Leuven 3001, Belgium
| |
Collapse
|
27
|
Lugo MCL, Bayer KCC, Gonzales SG, Confesor MNP. λ-like transition in the dynamics of ratchet gears in active bath. Phys Rev E 2020; 102:052607. [PMID: 33327070 DOI: 10.1103/physreve.102.052607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
To what extent the orientational order of self-propelling particles affects the dynamics of active bath-immersed ratchet devices remains unclear. We report experimental results of an inverse λ-like transition of the angular velocity of two ratchet gears in an active bath of self-propelling granular rods (SPRs) at different gear distances. The transition is caused by the phase transition in the orientational order of those SPRs located in the space between the gears. Brownian dynamics simulation of confined SPRs supports these observations. Thus, conditions for the upper bound efficiency of systems of active ratchet gears were obtained.
Collapse
Affiliation(s)
- Maria Christine L Lugo
- Department of Physics and PRISM, MSU-Iligan Institute of Technology, Andres Bonifacio Avenue, Tibanga, Iligan City, Philippines 9200
| | - Khate Cheryl C Bayer
- Department of Physics and PRISM, MSU-Iligan Institute of Technology, Andres Bonifacio Avenue, Tibanga, Iligan City, Philippines 9200
| | - Sheila G Gonzales
- Department of Physics and PRISM, MSU-Iligan Institute of Technology, Andres Bonifacio Avenue, Tibanga, Iligan City, Philippines 9200
| | - Mark Nolan P Confesor
- Department of Physics and PRISM, MSU-Iligan Institute of Technology, Andres Bonifacio Avenue, Tibanga, Iligan City, Philippines 9200
| |
Collapse
|
28
|
Zarif M, Naji A. Confinement-induced alternating interactions between inclusions in an active fluid. Phys Rev E 2020; 102:032613. [PMID: 33075886 DOI: 10.1103/physreve.102.032613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/08/2020] [Indexed: 11/07/2022]
Abstract
In a system of colloidal inclusions suspended in an equilibrium bath of smaller particles, the particulate bath engenders effective, short-ranged, primarily attractive interactions between the inclusions, known as depletion interactions, that originate from the steric depletion of bath particles from the immediate vicinity of the inclusions. In a bath of active (self-propelled) particles, the nature of such bath-mediated interactions can qualitatively change from attraction to repulsion, and they become stronger in magnitude and range of action as compared with typical equilibrium depletion interactions, especially as the bath activity (particle self-propulsion) is increased. We study effective interactions mediated by a bath of active Brownian particles between two fixed, impenetrable, and disk-shaped inclusions in a planar (channel) confinement in two dimensions. Confinement is found to strongly influence the effective interaction between the inclusions, specifically by producing alternating interaction profiles with possible attractive and repulsive regions in sufficiently narrow channels. We study the dependence of the ensuing interactions on different system parameters and the orientational (parallel versus perpendicular) configuration of the inclusion pair relative to the channel walls. The confinement effects are largely regulated by the layering of active particles next to the surface boundaries, both of the inclusions and the channel walls that counteract one another in accumulating the active particles in their own proximities. In narrow channels, the combined effects due to the channel walls and the inclusions lead to peculiar structuring of active particles (reminiscent of wavelike interference patterns) within the channel.
Collapse
Affiliation(s)
- Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
29
|
Reichhardt C, Reichhardt CJO. Directional locking effects for active matter particles coupled to a periodic substrate. Phys Rev E 2020; 102:042616. [PMID: 33212736 DOI: 10.1103/physreve.102.042616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Directional locking occurs when a particle moving over a periodic substrate becomes constrained to travel along certain substrate symmetry directions. Such locking effects arise for colloids and superconducting vortices moving over ordered substrates when the direction of the external drive is varied. Here we study the directional locking of run-and-tumble active matter particles interacting with a periodic array of obstacles. In the absence of an external biasing force, we find that the active particle motion locks to various symmetry directions of the substrate when the run time between tumbles is large. The number of possible locking directions depends on the array density and on the relative sizes of the particles and the obstacles. For a square array of large obstacles, the active particle only locks to the x, y, and 45^{∘} directions, while for smaller obstacles, the number of locking angles increases. Each locking angle satisfies θ=arctan(p/q), where p and q are integers, and the angle of motion can be measured using the ratio of the velocities or the velocity distributions in the x and y directions. When a biasing driving force is applied, the directional locking behavior is affected by the ratio of the self-propulsion force to the biasing force. For large biasing, the behavior resembles that found for directional locking in passive systems. For large obstacles under biased driving, a trapping behavior occurs that is nonmonotonic as a function of increasing run length or increasing self-propulsion force, and the trapping diminishes when the run length is sufficiently large.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
30
|
Sebtosheikh M, Naji A. Effective interactions mediated between two permeable disks in an active fluid. Sci Rep 2020; 10:15570. [PMID: 32968107 PMCID: PMC7511345 DOI: 10.1038/s41598-020-71209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
We study steady-state properties of a bath of active Brownian particles (ABPs) in two dimensions in the presence of two fixed, permeable (hollow) disklike inclusions, whose interior and exterior regions can exhibit mismatching motility (self-propulsion) strengths for the ABPs. We show that such a discontinuous motility field strongly affects spatial distribution of ABPs and thus also the effective interaction mediated between the inclusions through the active bath. Such net interactions arise from soft interfacial repulsions between ABPs that sterically interact with and/or pass through permeable membranes assumed to enclose the inclusions. Both regimes of repulsion and attractive (albeit with different mechanisms) are reported and summarized in overall phase diagrams.
Collapse
Affiliation(s)
- Mahmoud Sebtosheikh
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
31
|
Mallory SA, Bowers ML, Cacciuto A. Universal reshaping of arrested colloidal gels via active doping. J Chem Phys 2020; 153:084901. [PMID: 32872893 DOI: 10.1063/5.0016514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Colloids that interact via a short-range attraction serve as the primary building blocks for a broad range of self-assembled materials. However, one of the well-known drawbacks to this strategy is that these building blocks rapidly and readily condense into a metastable colloidal gel. Using computer simulations, we illustrate how the addition of a small fraction of purely repulsive self-propelled colloids, a technique referred to as active doping, can prevent the formation of this metastable gel state and drive the system toward its thermodynamically favored crystalline target structure. The simplicity and robust nature of this strategy offers a systematic and generic pathway to improving the self-assembly of a large number of complex colloidal structures. We discuss in detail the process by which this feat is accomplished and provide quantitative metrics for exploiting it to modulate the self-assembly. We provide evidence for the generic nature of this approach by demonstrating that it remains robust under a number of different anisotropic short-ranged pair interactions in both two and three dimensions. In addition, we report on a novel microphase in mixtures of passive and active colloids. For a broad range of self-propelling velocities, it is possible to stabilize a suspension of fairly monodisperse finite-size crystallites. Surprisingly, this microphase is also insensitive to the underlying pair interaction between building blocks. The active stabilization of these moderately sized monodisperse clusters is quite remarkable and should be of great utility in the design of hierarchical self-assembly strategies. This work further bolsters the notion that active forces can play a pivotal role in directing colloidal self-assembly.
Collapse
Affiliation(s)
- S A Mallory
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - M L Bowers
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - A Cacciuto
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
32
|
Li K, Guo F, Zhou X, Wang X, He L, Zhang L. An attraction-repulsion transition of force on two asymmetric wedges induced by active particles. Sci Rep 2020; 10:11702. [PMID: 32678189 PMCID: PMC7367348 DOI: 10.1038/s41598-020-68677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/21/2020] [Indexed: 02/04/2023] Open
Abstract
Effective interaction between two asymmetric wedges immersed in a two-dimensional active bath is investigated by computer simulations. The attraction–repulsion transition of effective force between two asymmetric wedges is subjected to the relative position of two wedges, the wedge-to-wedge distance, the active particle density, as well as the apex angle of two wedges. By exchanging the position of the two asymmetric wedges in an active bath, firstly a simple attraction–repulsion transition of effective force occurs, completely different from passive Brownian particles. Secondly the transition of effective force is symmetric for the long-range distance between two asymmetric wedges, while it is asymmetric for the short-range case. Our investigations may provide new possibilities to govern the motion and assembly of microscopic objects by taking advantage of the self-driven behaviour of active particles.
Collapse
Affiliation(s)
- Ke Li
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Fuchen Guo
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Xiaolin Zhou
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Xianghong Wang
- Department of Physics, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
33
|
Ma Z, Yang M, Ni R. Dynamic Assembly of Active Colloids: Theory and Simulation. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhan Ma
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang Drive, 637459 Singapore
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing 100190 China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing 100049 China
| | - Ran Ni
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
34
|
Ye S, Liu P, Ye F, Chen K, Yang M. Active noise experienced by a passive particle trapped in an active bath. SOFT MATTER 2020; 16:4655-4660. [PMID: 32373861 DOI: 10.1039/d0sm00006j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the properties of active noise experienced by a passive particle harmonically trapped in an active bath. The active bath is either explicitly simulated by an ensemble of active Brownian particles or abstractly represented by an active colored noise in theory. Assuming the equivalence of the two descriptions of the active bath, the active noise in the simulation system, which is directly extracted by fitting theoretical predictions to simulation measurements, is shown to depend on the constraint suffered by the passive tracer. This scenario is in significant contrast to the case of thermal noise that is independent of external trap potentials. The constraint dependence of active noise arises from the fact that the persistent force on the passive particle from the active bath can be influenced by the particle relaxation dynamics. Moreover, due to the interplay between the active collisions and particle relaxation dynamics, the effective temperature of the passive tracer quantified as the ratio of fluctuation to dissipation increases as the constraint strengthens, while the average potential and kinetic energies of the passive particle both decrease.
Collapse
Affiliation(s)
- Simin Ye
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Liu P, Ye S, Ye F, Chen K, Yang M. Constraint Dependence of Active Depletion Forces on Passive Particles. PHYSICAL REVIEW LETTERS 2020; 124:158001. [PMID: 32357018 DOI: 10.1103/physrevlett.124.158001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/22/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Using simulations and experiments, we demonstrate that the effective interaction between passive particles in an active bath substantially depends on an external constraint suffered by the passive particles. Particularly, the effective interaction between two free passive particles, which is directly measured in simulation, is qualitatively different from the one between two fixed particles. Moreover, we find that the friction experienced by the passive particles-a kinematic constraint-similarly influences the effective interaction. These remarkable features are in significant contrast to the equilibrium cases, and mainly arise from the accumulation of the active particles near the concave gap formed by the passive spheres. This constraint dependence not only deepens our understanding of the "active depletion force," but also provides an additional tool to tune the effective interactions in an active bath.
Collapse
Affiliation(s)
- Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simin Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Spandan V, Putt D, Ostilla-Mónico R, Lee AA. Fluctuation-induced force in homogeneous isotropic turbulence. SCIENCE ADVANCES 2020; 6:eaba0461. [PMID: 32284987 PMCID: PMC7124934 DOI: 10.1126/sciadv.aba0461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Understanding force generation in nonequilibrium systems is a notable challenge in statistical physics. We uncover a fluctuation-induced force between two plates immersed in homogeneous isotropic turbulence using direct numerical simulations. The force is a nonmonotonic function of plate separation. The mechanism of force generation reveals an intriguing analogy with fluctuation-induced forces: In a fluid, energy and vorticity are localized in regions of defined length scales. When varying the distance between the plates, we exclude energy structures modifying the overall pressure on the plates. At intermediate plate distances, the intense vorticity structures (worms) are forced to interact in close vicinity between the plates. This interaction affects the pressure in the slit and the force between the plates. The combination of these two effects causes a nonmonotonic attractive force with a complex Reynolds number dependence. Our study sheds light on how length scale-dependent distributions of energy and high-intensity vortex structures determine Casimir forces.
Collapse
Affiliation(s)
- Vamsi Spandan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Putt
- Department of Mechanical Engineering, University of Houston, TX 77004, USA
| | | | - Alpha A. Lee
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
37
|
Abstract
Large-scale collective behavior in suspensions of active particles can be understood from the balance of statistical forces emerging beyond the direct microscopic particle interactions. Here we review some aspects of the collective forces that can arise in suspensions of self-propelled active Brownian particles: wall forces under confinement, interfacial forces, and forces on immersed bodies mediated by the suspension. Even for non-aligning active particles, these forces are intimately related to a non-uniform polarization of particle orientations induced by walls and bodies, or inhomogeneous density profiles. We conclude by pointing out future directions and promising areas for the application of collective forces in synthetic active matter, as well as their role in living active matter.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.
| |
Collapse
|
38
|
|
39
|
Vishen AS, Prost J, Rao M. Breakdown of effective temperature, power law interactions, and self-propulsion in a momentum-conserving active fluid. Phys Rev E 2020; 100:062602. [PMID: 31962504 DOI: 10.1103/physreve.100.062602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 11/07/2022]
Abstract
The simplest extensions of single-particle dynamics in a momentum-conserving active fluid-an active suspension of two colloidal particles or a single particle confined by a wall-exhibit strong departures from Boltzmann behavior, resulting in either a breakdown of an effective temperature description or a steady state with nonzero-entropy production rate. This is a consequence of hydrodynamic interactions that introduce multiplicative noise in the stochastic description of particle positions. This results in fluctuation-induced interactions that depend on distance as a power law. We find that the dynamics of activated colloids in a passive fluid, with stochastic forcing localized on the particle, is different from that of passive colloids in an active fluctuating fluid.
Collapse
Affiliation(s)
- Amit Singh Vishen
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Jacques Prost
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| |
Collapse
|
40
|
Hoell C, Löwen H, Menzel AM. Multi-species dynamical density functional theory for microswimmers: Derivation, orientational ordering, trapping potentials, and shear cells. J Chem Phys 2019. [DOI: 10.1063/1.5099554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
41
|
Angelani L. Spontaneous assembly of colloidal vesicles driven by active swimmers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:075101. [PMID: 30523954 DOI: 10.1088/1361-648x/aaf516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We explore the self-assembly process of colloidal structures immersed in active baths. By considering low-valence particles we numerically investigate the irreversible aggregation dynamics originated by the presence of run-and-tumble swimmers. We observe the formation of long closed chains-vesicles-densely filled by active swimmers. On the one hand the active bath drives the self-assembly of closed colloidal structures, and on the other hand the vesicles formation fosters the self-trapping of swimmers, suggesting new ways both to build structured nanomaterials and to trap microorganisms.
Collapse
Affiliation(s)
- Luca Angelani
- ISC-CNR, Institute for Complex Systems, and Dipartimento di Fisica, Università Sapienza, Piazzale Aldo Moro 2, I-00185 Rome, Italy
| |
Collapse
|
42
|
Omar AK, Wu Y, Wang ZG, Brady JF. Swimming to Stability: Structural and Dynamical Control via Active Doping. ACS NANO 2019; 13:560-572. [PMID: 30592601 DOI: 10.1021/acsnano.8b07421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
External fields can decidedly alter the free energy landscape of soft materials and can be exploited as a powerful tool for the assembly of targeted nanostructures and colloidal materials. Here, we use computer simulations to demonstrate that nonequilibrium internal fields or forces-forces that are generated by driven components within a system-in the form of active particles can precisely modulate the dynamical free energy landscape of a model soft material, a colloidal gel. Embedding a small fraction of active particles within a gel can provide a unique pathway for the dynamically frustrated network to circumvent the kinetic barriers associated with reaching a lower free energy state through thermal fluctuations alone. Moreover, by carefully tuning the active particle properties (the propulsive swim force and persistence length) in comparison to those of the gel, the active particles may induce depletion-like forces between the constituent particles of the gel despite there being no geometric size asymmetry between the particles. These resulting forces can rapidly push the system toward disparate regions of phase space. Intriguingly, the state of the material can be altered by tuning macroscopic transport properties such as the solvent viscosity. Our findings highlight the potential wide-ranging structural and kinetic control facilitated by varying the dynamical properties of a remarkably small fraction of driven particles embedded in a host material.
Collapse
Affiliation(s)
- Ahmad K Omar
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Yanze Wu
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - John F Brady
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
43
|
Caprini L, Marini Bettolo Marconi U. Active particles under confinement and effective force generation among surfaces. SOFT MATTER 2018; 14:9044-9054. [PMID: 30387799 DOI: 10.1039/c8sm01840e] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider the effect of geometric confinement on the steady-state properties of a one-dimensional active suspension subject to thermal noise. The random active force is modeled by an Ornstein-Uhlenbeck process and the system is studied both numerically, by integrating the Langevin governing equations, and analytically by solving the associated Fokker-Planck equation under suitable approximations. The comparison between the two approaches displays a fairly good agreement and in particular, we show that the Fokker-Planck approach can predict the structure of the system both in the wall region and in the bulk-like region where the surface forces are negligible. The simultaneous presence of thermal noise and active forces determines the formation of a layer, extending from the walls towards the bulk, where the system exhibits polar order. We relate the presence of such ordering to the mechanical pressure exerted on the container's walls and show how it depends on the separation of the boundaries and determines a Casimir-like attractive force mediated by the active suspension.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100 L'Aquila, Italy
| | | |
Collapse
|
44
|
Singh Vishen A, Rupprecht JF, Shivashankar GV, Prost J, Rao M. Soft inclusion in a confined fluctuating active gel. Phys Rev E 2018; 97:032602. [PMID: 29776019 DOI: 10.1103/physreve.97.032602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 01/14/2023]
Abstract
We study stochastic dynamics of a point and extended inclusion within a one-dimensional confined active viscoelastic gel. We show that the dynamics of a point inclusion can be described by a Langevin equation with a confining potential and multiplicative noise. Using a systematic adiabatic elimination over the fast variables, we arrive at an overdamped equation with a proper definition of the multiplicative noise. To highlight various features and to appeal to different biological contexts, we treat the inclusion in turn as a rigid extended element, an elastic element, and a viscoelastic (Kelvin-Voigt) element. The dynamics for the shape and position of the extended inclusion can be described by coupled Langevin equations. Deriving exact expressions for the corresponding steady-state probability distributions, we find that the active noise induces an attraction to the edges of the confining domain. In the presence of a competing centering force, we find that the shape of the probability distribution exhibits a sharp transition upon varying the amplitude of the active noise. Our results could help understanding the positioning and deformability of biological inclusions, e.g., organelles in cells, or nucleus and cells within tissues.
Collapse
Affiliation(s)
- Amit Singh Vishen
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - J-F Rupprecht
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - J Prost
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| |
Collapse
|
45
|
Reichhardt C, Reichhardt CJO. Clogging and depinning of ballistic active matter systems in disordered media. Phys Rev E 2018; 97:052613. [PMID: 29906960 DOI: 10.1103/physreve.97.052613] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 06/08/2023]
Abstract
We numerically examine ballistic active disks driven through a random obstacle array. Formation of a pinned or clogged state occurs at much lower obstacle densities for the active disks than for passive disks. As a function of obstacle density, we identify several distinct phases including a depinned fluctuating cluster state, a pinned single-cluster or jammed state, a pinned multicluster state, a pinned gel state, and a pinned disordered state. At lower active disk densities, a drifting uniform liquid forms in the absence of obstacles, but when even a small number of obstacles are introduced, the disks organize into a pinned phase-separated cluster state in which clusters nucleate around the obstacles, similar to a wetting phenomenon. We examine how the depinning threshold changes as a function of disk or obstacle density and find a crossover from a collectively pinned cluster state to a disordered plastic depinning transition as a function of increasing obstacle density. We compare this to the behavior of nonballistic active particles and show that as we vary the activity from completely passive to completely ballistic, a clogged phase-separated state appears in both the active and passive limits, while for intermediate activity, a readily flowing liquid state appears and there is an optimal activity level that maximizes the flux through the sample.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
46
|
Affiliation(s)
| | - Chantal Valeriani
- Departamento de Física Aplicada I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
47
|
Preziosi V, Perazzo A, Tomaiuolo G, Guido S. The effect of flow on viscoelastic emulsion microstructure. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:45. [PMID: 29589210 DOI: 10.1140/epje/i2018-11652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Emulsions made of oil, water and surfactants are widespread soft materials with complex structures depending on composition and temperature. Emulsion phase behavior at rest has been widely investigated but flow-induced effects, which are very relevant in many applications, can still be further explored towards improved emulsion microstructural design. In this work, we use low energy emulsification processing to create small-sized emulsions. In a previous report, we showed the emulsion morphology development and the effect of flow on the microstructure of a highly viscoelastic attractive emulsion which result in a concentrated nanoemulsion after viscoelastic droplet filaments are disrupted. Here, we show that upon stopping the flow, the filaments slowly buckle, recoil and finally form clusters of randomly flocculated droplets. We thus obtain two completely different emulsion morphologies simply induced by the action of flow, where in both cases attractive interactions play a key role. The emulsion high interfacial area represents a valuable feature for several applications such as upstream operations, microreaction media and drug delivery.
Collapse
Affiliation(s)
- Valentina Preziosi
- Department of Chemical, Materials and Production Engineering, University of Napoli Federico II, 80125, Napoli, Italy.
| | - Antonio Perazzo
- Department of Chemical, Materials and Production Engineering, University of Napoli Federico II, 80125, Napoli, Italy
| | - Giovanna Tomaiuolo
- Department of Chemical, Materials and Production Engineering, University of Napoli Federico II, 80125, Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145, Napoli, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, University of Napoli Federico II, 80125, Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145, Napoli, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), 50121, Firenze, Italy
| |
Collapse
|
48
|
Rohwer CM, Solon A, Kardar M, Krüger M. Nonequilibrium forces following quenches in active and thermal matter. Phys Rev E 2018; 97:032125. [PMID: 29776074 DOI: 10.1103/physreve.97.032125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
Collapse
Affiliation(s)
- Christian M Rohwer
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- 4th Institute for Theoretical Physics, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Alexandre Solon
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthias Krüger
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- 4th Institute for Theoretical Physics, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
49
|
Duzgun A, Selinger JV. Active Brownian particles near straight or curved walls: Pressure and boundary layers. Phys Rev E 2018; 97:032606. [PMID: 29776164 DOI: 10.1103/physreve.97.032606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.
Collapse
Affiliation(s)
- Ayhan Duzgun
- Department of Physics and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
| | - Jonathan V Selinger
- Department of Physics and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
50
|
Baek Y, Solon AP, Xu X, Nikola N, Kafri Y. Generic Long-Range Interactions Between Passive Bodies in an Active Fluid. PHYSICAL REVIEW LETTERS 2018; 120:058002. [PMID: 29481190 DOI: 10.1103/physrevlett.120.058002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 06/08/2023]
Abstract
A single nonspherical body placed in an active fluid generates currents via breaking of time-reversal symmetry. We show that, when two or more passive bodies are placed in an active fluid, these currents lead to long-range interactions. Using a multipole expansion, we characterize their leading-order behaviors in terms of single-body properties and show that they decay as a power law with the distance between the bodies, are anisotropic, and do not obey an action-reaction principle. The interactions lead to rich dynamics of the bodies, illustrated by the spontaneous synchronized rotation of pinned nonchiral bodies and the formation of traveling bound pairs. The occurrence of these phenomena depends on tunable properties of the bodies, thus opening new possibilities for self-assembly mediated by active fluids.
Collapse
Affiliation(s)
- Yongjoo Baek
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Alexandre P Solon
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Xinpeng Xu
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Department of Physics, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, People's Republic of China
| | - Nikolai Nikola
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|