1
|
Yu N, Huang D, Lu S, Khrapak S, Feng Y. Universal scaling of transverse sound speed and its isomorphic property in Yukawa fluids. Phys Rev E 2024; 109:035202. [PMID: 38632806 DOI: 10.1103/physreve.109.035202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
Molecular dynamical simulations are performed to investigate the scaling of the transverse sound speed in two-dimensional (2D) and 3D Yukawa fluids. From the calculated diagnostics of the radial distribution function, the mean-squared displacement, and the Pearson correlation coefficient, the approximate isomorphic curves for 2D and 3D liquidlike Yukawa systems are obtained. It is found that the structure and dynamics of 2D and 3D liquidlike Yukawa systems exhibit the isomorphic property under the conditions of the same relative coupling parameter Γ/Γ_{m}=const. It is demonstrated that the reduced transverse sound speed, i.e., the ratio of the transverse sound speed to the thermal speed, is an isomorph invariant, which is a quasiuniversal function of Γ/Γ_{m}. The obtained isomorph invariant of the reduced transverse sound speed can be useful to estimate the transverse sound speed, or determine the coupling strength, with applications to dusty (complex) plasma or colloidal systems.
Collapse
Affiliation(s)
- Nichen Yu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shaoyu Lu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Sergey Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
2
|
Pak C, Billings V, Schlitters M, Bergeson SD, Murillo MS. Preliminary study of plasma modes and electron-ion collisions in partially magnetized strongly coupled plasmas. Phys Rev E 2024; 109:015201. [PMID: 38366520 DOI: 10.1103/physreve.109.015201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/07/2023] [Indexed: 02/18/2024]
Abstract
Magnetic fields influence ion transport in plasmas. Straightforward comparisons of experimental measurements with plasma theories are complicated when the plasma is inhomogeneous, far from equilibrium, or characterized by strong gradients. To better understand ion transport in a partially magnetized system, we study the hydrodynamic velocity and temperature evolution in an ultracold neutral plasma at intermediate values of the magnetic field. We observe a transverse, radial breathing mode that does not couple to the longitudinal velocity. The inhomogeneous density distribution gives rise to a shear velocity gradient that appears to be only weakly damped. This mode is excited by ion oscillations originating in the wings of the distribution where the plasma becomes non-neutral. The ion temperature shows evidence of an enhanced electron-ion collision rate in the presence of the magnetic field. Ultracold neutral plasmas provide a rich system for studying mode excitation and decay.
Collapse
Affiliation(s)
- Chanhyun Pak
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Virginia Billings
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Matthew Schlitters
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Scott D Bergeson
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
3
|
Qiu P, Feng Y. Fast particles overtaking shock front in two-dimensional Yukawa solids. Phys Rev E 2022; 106:015203. [PMID: 35974640 DOI: 10.1103/physreve.106.015203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
High-speed particles overtaking the shock front during the propagation of compressional shocks in two-dimensional (2D) Yukawa solids are investigated using molecular dynamical simulations. When the compressional speed is lower, all particles around the shock front are almost accelerated synchronously. However, when the compressional speed is much higher, some particles penetrate the shock front to enter the preshock region. Around the shock front, it is found that the particle velocity profile at the first peak of the dispersive shock wave (DSW) is able to be described using the Gaussian distribution, so that the amplitudes of the DSW can be well characterized. As the compressional speed increases, the particle velocity corresponding to these DSW's amplitudes increase more substantially than the shock front speed. These amplitudes of the DSW are found to be able to predict the occurrence of the fast particles. Combined with the previous study of the DSW's period, it is demonstrated that the properties of the DSW are nearly not affected by the conditions of the 2D Yukawa systems, but only related to the compressional speed.
Collapse
Affiliation(s)
- Pengwei Qiu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Zeng Y, Ma Z, Feng Y. Determination of best particle tracking velocimetry method for two-dimensional dusty plasmas. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:033507. [PMID: 35364986 DOI: 10.1063/5.0073342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A practical procedure of determining the best choice of particle tracking velocimetry (PTV) methods for the analysis of two-dimensional (2D) dusty plasmas is provided. Using the measured particle positions with errors, the algorithm of PTV introduces further systematic errors while calculating particle velocities. To better quantify the errors, computer simulations of 2D Yukawa liquids are performed so that the true particle positions and velocities are precisely known. Synthetic data are achieved by varying the time interval between frames and adding the uncertainty with the different magnitude to the particle position data. Various PTV methods are used to calculate the velocity data from the achieved synthetic data, and the obtained velocity data from these PTV methods are compared with the true velocity data using two diagnostics to determine the best PTV method for various conditions. The results of various PTV methods with the simulation data are further confirmed by the demonstration using the 2D dusty plasma experimental data. This practical procedure is also applicable to determine the best PTV method for dusty plasmas in different conditions, such as those in Tokamaks, and for other physical systems, including colloids, granular materials, and fluid mechanics.
Collapse
Affiliation(s)
- Yue Zeng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhuang Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
5
|
Ding X, Lu S, Sun T, Murillo MS, Feng Y. Head-on collision of compressional shocks in two-dimensional Yukawa systems. Phys Rev E 2021; 103:013202. [PMID: 33601497 DOI: 10.1103/physreve.103.013202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
The head-on collision of compressional shocks in two-dimensional dusty plasmas is investigated using both molecular dynamical and Langevin simulations. Two compressional shocks are generated from the inward compressional boundaries in simulations. It is found that, during the collision of shocks, there is a generally existing time delay of shocks τ, which diminishes monotonically with the increasing compressional speed of boundaries, corresponding to the time resolution of the studied system. Dispersive shock waves (DSWs) are generated around the shock front for some conditions. It is also found that the period of the DSW decreases monotonically with the inward compressional speed of boundaries, more substantially than the time delay of shocks τ. When the inward compressional speed of boundaries increases further, the DSWs gradually vanish. We speculate that, for these high compressional speeds of boundaries, the period of the DSW might be reduced to a comparable timescale of the time delay of shocks τ, i.e., the time resolution of our studied system, or even shorter, thus the DSW reasonably vanishes.
Collapse
Affiliation(s)
- Xia Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Shaoyu Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Tianyue Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
6
|
Lin W, Murillo MS, Feng Y. Pressure and energy of compressional shocks in two-dimensional Yukawa systems. Phys Rev E 2019; 100:043203. [PMID: 31770881 DOI: 10.1103/physreve.100.043203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 11/07/2022]
Abstract
The propagation of compressional shocks in two-dimensional (2D) dusty plasmas is investigated using MD simulations under various conditions. The shock Hugoniot curves of the relationship between the shock front speed D and the mean particle speed v[over ¯] after shocks are obtained and analytically fit to parabolic expressions. As the screening parameter increases, the weaker Yukawa interparticle interaction cause the shock Hugoniot curves to be more linear. Combining the obtained shock Hugoniot curves with the Rankine-Hugoniot jump relations, analytic expressions of pressure and energy after the shocks in 2D Yukawa systems are obtained, which are functions of the observable quantities, like the shock front speed D or the mean particle speed v[over ¯] or the specific volume.
Collapse
Affiliation(s)
- Wei Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Ghannad Z. Fickian yet non-Gaussian diffusion in two-dimensional Yukawa liquids. Phys Rev E 2019; 100:033211. [PMID: 31639989 DOI: 10.1103/physreve.100.033211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/07/2022]
Abstract
We investigate Fickian diffusion in two-dimensional (2D) Yukawa liquids using molecular dynamics simulations. We compute the self-van Hove correlation function G_{s}(r,t) and the self-intermediate scattering function F_{s}(k,t), and we compare these functions with those obtained from mean-squared displacement (MSD) using the Gaussian approximation. According to this approximation, a linear MSD with time implies a Gaussian behavior for G_{s}(r,t) and F_{s}(k,t) at all times. Surprisingly, we find that these functions deviate from Gaussian at intermediate timescales, indicating the failure of the Gaussian approximation. Furthermore, we quantify these deviations by the non-Gaussian parameter, and we find that the deviations increase when the temperature of the liquid decreases. The origin of the non-Gaussian behavior may be the heterogeneous dynamics of dust particles observed in 2D Yukawa liquids.
Collapse
Affiliation(s)
- Zahra Ghannad
- Department of Physics, Alzahra University, P.O. Box 19938-93973, Tehran, Iran
| |
Collapse
|
8
|
Hartmann P, Reyes JC, Kostadinova EG, Matthews LS, Hyde TW, Masheyeva RU, Dzhumagulova KN, Ramazanov TS, Ott T, Kählert H, Bonitz M, Korolov I, Donkó Z. Self-diffusion in two-dimensional quasimagnetized rotating dusty plasmas. Phys Rev E 2019; 99:013203. [PMID: 30780312 DOI: 10.1103/physreve.99.013203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 11/07/2022]
Abstract
The self-diffusion phenomenon in a two-dimensional dusty plasma at extremely strong (effective) magnetic fields is studied experimentally and by means of molecular dynamics simulations. In the experiment the high magnetic field is introduced by rotating the particle cloud and observing the particle trajectories in a corotating frame, which allows reaching effective magnetic fields up to 3000 T. The experimental results confirm the predictions of the simulations: (i) superdiffusive behavior is found at intermediate timescales and (ii) the dependence of the self-diffusion coefficient on the magnetic field is well reproduced.
Collapse
Affiliation(s)
- P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary.,Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - J C Reyes
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - E G Kostadinova
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - L S Matthews
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - T W Hyde
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - R U Masheyeva
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - T Ott
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - H Kählert
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - M Bonitz
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - I Korolov
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
9
|
Time-Dependent Diffusion Coefficients for Chaotic Advection due to Fluctuations of Convective Rolls. FLUIDS 2018. [DOI: 10.3390/fluids3040099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The properties of chaotic advection arising from defect turbulence, that is, weak turbulence in the electroconvection of nematic liquid crystals, were experimentally investigated. Defect turbulence is a phenomenon in which fluctuations of convective rolls arise and are globally disturbed while maintaining convective rolls locally. The time-dependent diffusion coefficient, as measured from the motion of a tagged particle driven by the turbulence, was used to clarify the dependence of the type of diffusion on coarse-graining time. The results showed that, as coarse-graining time increases, the type of diffusion changes from superdiffusion → subdiffusion → normal diffusion. The change in diffusive properties over the observed timescale reflects the coexistence of local order and global disorder in the defect turbulence.
Collapse
|
10
|
Feng Y, Lin W, Murillo MS. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field. Phys Rev E 2018; 96:053208. [PMID: 29347770 DOI: 10.1103/physreve.96.053208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 11/07/2022]
Abstract
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Collapse
Affiliation(s)
- Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Wei Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
11
|
Baalrud SD, Daligault J. Transport regimes spanning magnetization-coupling phase space. Phys Rev E 2017; 96:043202. [PMID: 29347622 DOI: 10.1103/physreve.96.043202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The manner in which transport properties vary over the entire parameter-space of coupling and magnetization strength is explored. Four regimes are identified based on the relative size of the gyroradius compared to other fundamental length scales: the collision mean free path, Debye length, distance of closest approach, and interparticle spacing. Molecular dynamics simulations of self-diffusion and temperature anisotropy relaxation spanning the parameter space are found to agree well with the predicted boundaries. Comparison with existing theories reveals regimes where they succeed, where they fail, and where no theory has yet been developed.
Collapse
Affiliation(s)
- Scott D Baalrud
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jérôme Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
12
|
Ott T, Bonitz M, Hartmann P, Donkó Z. Spontaneous generation of temperature anisotropy in a strongly coupled magnetized plasma. Phys Rev E 2017; 95:013209. [PMID: 28208314 DOI: 10.1103/physreve.95.013209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/06/2023]
Abstract
A magnetic field was recently shown to enhance field-parallel heat conduction in a strongly correlated plasma whereas cross-field conduction is reduced. Here we show that in such plasmas, the magnetic field has the additional effect of inhibiting the isotropization process between field-parallel and cross-field temperature components, thus leading to the emergence of strong and long-lived temperature anisotropies when the plasma is locally perturbed. An extended heat equation is shown to describe this process accurately.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
13
|
Dzhumagulova KN, Masheyeva RU, Ott T, Hartmann P, Ramazanov TS, Bonitz M, Donkó Z. Cage correlation and diffusion in strongly coupled three-dimensional Yukawa systems in magnetic fields. Phys Rev E 2016; 93:063209. [PMID: 27415379 DOI: 10.1103/physreve.93.063209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 06/06/2023]
Abstract
The influence of an external homogeneous magnetic field on the quasilocalization of the particles-characterized quantitatively by cage correlation functions-in strongly coupled three-dimensional Yukawa systems is investigated via molecular dynamics computer simulations over a wide domain of the system parameters (coupling and screening strengths, and magnetic field). The caging time is found to be enhanced by the magnetic field B. The anisotropic migration of the particles in the presence of magnetic field is quantified via computing directional correlation functions, which indicate a more significant increase of localization in the direction perpendicular to B, while a moderate increase is also found along the B field lines. Associating the particles' escapes from the cages with jumps of a characteristic length, a connection is found with the diffusion process: the diffusion coefficients derived from the decay time of the directional correlation functions in both the directions perpendicular to and parallel with B are in very good agreement with respective diffusion coefficients values obtained from their usual computation based on the mean-squared displacement of the particles.
Collapse
Affiliation(s)
- K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - R U Masheyeva
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - T Ott
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - M Bonitz
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| |
Collapse
|
14
|
Ott T, Bonitz M, Donkó Z. Effect of correlations on heat transport in a magnetized strongly coupled plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063105. [PMID: 26764836 DOI: 10.1103/physreve.92.063105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 06/05/2023]
Abstract
In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much less and even enhances the parallel transport. These surprising observations are explained by the competition of kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle molecular dynamics simulations of a one-component plasma.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B 49, Hungary
| |
Collapse
|