1
|
Miranda JP, Levis D, Valeriani C. Collective motion of energy depot active disks. SOFT MATTER 2025; 21:1045-1053. [PMID: 39600192 DOI: 10.1039/d4sm00785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In the present work we have studied collectives of active disks with an energy depot, moving in the two-dimensional plane and interacting via an excluded volume. The energy depot accounts for the extraction of energy taking place at the level of each particle in order to perform self-propulsion, included in an underdamped Langevin dynamics. We show that this model undergoes a flocking transition, exhibiting some of the key features of the Vicsek model, namely, band formation and giant number fluctuations. These bands, either single or multiple, are dense and very strongly polarised propagating structures. Large density bands disappear as the activity is further increased, eventually reaching a homogeneous polar state. We unravel an effective alignment interaction at the level of two-particle collisions that can be controlled by activity and gives rise to flocking at large scales.
Collapse
Affiliation(s)
- Juan Pablo Miranda
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid 28040, Spain.
- GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid 28040, Spain
| | - Demian Levis
- Computing and Understanding Collective Action (CUCA) Lab, Condensed Matter Physics Department, Universitat de Barcelona, Marti i Franquès 1, Barcelona 08028, Spain.
- University of Barcelona Institute of Complex Systems (UBICS), Martí i Franquès 1, Barcelona E08028, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid 28040, Spain.
- GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid 28040, Spain
| |
Collapse
|
2
|
Arango-Restrepo A, Torrenegra-Rico JD, Rubi JM. Entropy Production in a System of Janus Particles. ENTROPY (BASEL, SWITZERLAND) 2025; 27:112. [PMID: 40003109 PMCID: PMC11854198 DOI: 10.3390/e27020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Entropy production is a key descriptor of out-of-equilibrium behavior in active matter systems, providing insights into both single-particle dynamics and emergent collective phenomena. It helps determine transport coefficients and phoretic velocities and serves as a crucial tool for understanding collective phenomena such as structural transitions, regime shifts, clustering, and self-organization. This study investigates the role of entropy production for individual active (catalytic Janus) particles and in systems of active particles interacting with one another and their environment. We employ a multiscale framework to bridge microscopic particle dynamics and macroscopic behavior, offering a thermodynamic perspective on active matter. These findings enhance our understanding of the fundamental principles governing active particle systems and create new opportunities for addressing unresolved questions in non-equilibrium thermodynamics.
Collapse
|
3
|
Karan C, Chaudhuri A, Chaudhuri D. Inertia and activity: spiral transitions in semi-flexible, self-avoiding polymers. SOFT MATTER 2024; 20:6221-6230. [PMID: 39049672 DOI: 10.1039/d4sm00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We consider a two-dimensional, tangentially active, semi-flexible, self-avoiding polymer to find a dynamical re-entrant transition between motile open chains and spinning achiral spirals with increasing activity. Utilizing probability distributions of the turning number, we ascertain the comparative stability of the spiral structure and present a detailed phase diagram within the activity inertia plane. The onset of spiral formation at low activity levels is governed by a torque balance and is independent of inertia. At higher activities, however, inertial effects lead to spiral destabilization, an effect absent in the overdamped limit. We further delineate alterations in size and shape by analyzing the end-to-end distance distribution and the radius of gyration tensor. The Kullback-Leibler divergence from equilibrium distributions exhibits a non-monotonic relationship with activity, reaching a peak at the most compact spirals characterized by the most persistent spinning. As inertia increases, this divergence from equilibrium diminishes.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, PO 140306, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
Szamel G. Single active particle in a harmonic potential: Question about the existence of the Jarzynski relation. Phys Rev E 2023; 107:054602. [PMID: 37329101 DOI: 10.1103/physreve.107.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/21/2023] [Indexed: 06/18/2023]
Abstract
The interest in active matter stimulates the need to generalize thermodynamic description and relations to active matter systems, which are intrinsically out of equilibrium. One important example is the Jarzynski relation, which links the exponential average of work done in an arbitrary process connecting two equilibrium states with the difference of the free energies of these states. Using a simple model system, a single thermal active Ornstein-Uhlenbeck particle in a harmonic potential, we show that if the standard stochastic thermodynamics definition of work is used, the Jarzynski relation is not generally valid for processes connecting stationary states of active matter systems.
Collapse
Affiliation(s)
- Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
5
|
Venkatareddy N, Lin ST, Maiti PK. Phase behavior of active and passive dumbbells. Phys Rev E 2023; 107:034607. [PMID: 37073042 DOI: 10.1103/physreve.107.034607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023]
Abstract
We report phase separation in a mixture of "hot" and "cold" three-dimensional dumbbells which interact by Lennard-Jones potential. We also have studied the effect of asymmetry of dumbbells and the variation of ratio of "hot" and "cold" dumbbells on their phase separation. The ratio of the temperature difference between hot and cold dumbbells to the temperature of cold dumbbells is a measure of the activity χ of the system. From constant density simulations of symmetric dumbbells, we observe that the "hot" and "cold" dumbbells phase separate at higher activity ratio (χ>5.80) compared to that of a mixture of hot and cold Lennard-Jones monomers (χ>3.44). We find that, in the phase-separated system, the hot dumbbells have high effective volume and hence high entropy which is calculated by two-phase thermodynamic method. The high kinetic pressure of hot dumbbells forces the cold dumbbells to form dense clusters such that at the interface the high kinetic pressure of hot dumbbells is balanced by the virial pressure of cold dumbbells. We find that phase separation pushes the cluster of cold dumbbells to have solidlike ordering. Bond orientation order parameters reveal that the cold dumbbells form solidlike ordering consisting of predominantly face-centered cubic and hexagonal-close packing packing, but the individual dumbbells have random orientations. The simulation of the nonequilibrium system of symmetric dumbbells at different ratios of number of hot dumbbells to cold dumbbells reveals that the critical activity of phase separation decreases with increase in fraction of hot dumbbells. The simulation of equal mixture of hot and cold asymmetric dumbbells revealed that the critical activity of phase separation was independent of the asymmetry of dumbbells. We also observed that the clusters of cold asymmetric dumbbells showed both crystalline and noncrystalline order depending on the asymmetry of dumbbells.
Collapse
Affiliation(s)
- Nayana Venkatareddy
- Department of Physics, Indian Institute of Science, C. V. Raman Ave,Bengaluru 560012, India
| | - Shiang-Tai Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617
| | - Prabal K Maiti
- Department of Physics, Indian Institute of Science, C. V. Raman Ave,Bengaluru 560012, India
| |
Collapse
|
6
|
Hecht L, Mandal S, Löwen H, Liebchen B. Active Refrigerators Powered by Inertia. PHYSICAL REVIEW LETTERS 2022; 129:178001. [PMID: 36332249 DOI: 10.1103/physrevlett.129.178001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We present the operational principle for a refrigerator that uses inertial effects in active Brownian particles to locally reduce their (kinetic) temperature by 2 orders of magnitude below the environmental temperature. This principle exploits the peculiar but so-far unknown shape of the phase diagram of inertial active Brownian particles to initiate motility-induced phase separation in the targeted cooling regime only. Remarkably, active refrigerators operate without requiring isolating walls opening the route toward using them to systematically absorb and trap, e.g., toxic substances from the environment.
Collapse
Affiliation(s)
- Lukas Hecht
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Suvendu Mandal
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| |
Collapse
|
7
|
Caraglio M, Franosch T. Analytic Solution of an Active Brownian Particle in a Harmonic Well. PHYSICAL REVIEW LETTERS 2022; 129:158001. [PMID: 36269953 DOI: 10.1103/physrevlett.129.158001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. The propagator is then expressed as a combination of the equilibrium eigenstates with weights obeying exact iterative relations. We show that for the low-order correlation functions, such as the positional autocorrelation function, the recursion terminates at finite order in the Péclet number, allowing us to generate exact compact expressions and derive the velocity autocorrelation function and the time-dependent diffusion coefficient. The nonmonotonic behavior of latter quantities serves as a fingerprint of the nonequilibrium dynamics.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
GrandPre T, Klymko K, Mandadapu KK, Limmer DT. Entropy production fluctuations encode collective behavior in active matter. Phys Rev E 2021; 103:012613. [PMID: 33601608 DOI: 10.1103/physreve.103.012613] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
We derive a general lower bound on distributions of entropy production in interacting active matter systems. The bound is tight in the limit that interparticle correlations are small and short-ranged, which we explore in four canonical active matter models. In all models studied, the bound is weak where collective fluctuations result in long-ranged correlations, which subsequently links the locations of phase transitions to enhanced entropy production fluctuations. We develop a theory for the onset of enhanced fluctuations and relate it to specific phase transitions in active Brownian particles. We also derive optimal control forces that realize the dynamics necessary to tune dissipation and manipulate the system between phases. In so doing, we uncover a general relationship between entropy production and pattern formation in active matter, as well as ways of controlling it.
Collapse
Affiliation(s)
- Trevor GrandPre
- Department of Physics, University of California, Berkeley, California 94609, USA
| | - Katherine Klymko
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94609, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| | - David T Limmer
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA.,Department of Chemistry, University of California, Berkeley, California 94609, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA.,Kavli Energy NanoScience Institute, Berkeley, California 94609, USA
| |
Collapse
|
9
|
Zanovello L, Caraglio M, Franosch T, Faccioli P. Target Search of Active Agents Crossing High Energy Barriers. PHYSICAL REVIEW LETTERS 2021; 126:018001. [PMID: 33480788 DOI: 10.1103/physrevlett.126.018001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Target search by active agents in rugged energy landscapes has remained a challenge because standard enhanced sampling methods do not apply to irreversible dynamics. We overcome this nonequilibrium rare-event problem by developing an algorithm generalizing transition-path sampling to active Brownian dynamics. This method is exemplified and benchmarked for a paradigmatic two-dimensional potential with a high barrier. We find that even in such a simple landscape the structure and kinetics of the ensemble of transition paths changes drastically in the presence of activity. Indeed, active Brownian particles reach the target more frequently than passive Brownian particles, following longer and counterintuitive search patterns.
Collapse
Affiliation(s)
- Luigi Zanovello
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
- Dipartimento di Fisica, Università degli studi di Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Pietro Faccioli
- Dipartimento di Fisica, Università degli studi di Trento, Via Sommarive 14, 38123 Trento, Italy
- Istituto Nazionale di Fisica Nucleare - Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, 38123 Trento, Italy
| |
Collapse
|
10
|
Razin N. Entropy production of an active particle in a box. Phys Rev E 2020; 102:030103. [PMID: 33075964 DOI: 10.1103/physreve.102.030103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
A run-and-tumble particle in a one-dimensional box (infinite potential well) is studied. The steady state is analytically solved and analyzed, revealing the emergent length scale of the boundary layer where particles accumulate near the walls. The mesoscopic steady state entropy production rate of the system is derived from coupled Fokker-Planck equations with a linear reaction term, resulting in an exact analytic expression. The entropy production density is shown to peak at the walls. Additionally, the derivative of the entropy production rate peaks at a system size proportional to the length scale of the accumulation boundary layer, suggesting that the behavior of the entropy production rate and its derivatives as a function of the control parameter may signify a qualitative behavior change in the physics of active systems, such as phase transitions.
Collapse
Affiliation(s)
- Nitzan Razin
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Herpich T, Shayanfard K, Esposito M. Effective thermodynamics of two interacting underdamped Brownian particles. Phys Rev E 2020; 101:022116. [PMID: 32168555 DOI: 10.1103/physreve.101.022116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Starting from the stochastic thermodynamics description of two coupled underdamped Brownian particles, we showcase and compare three different coarse-graining schemes leading to an effective thermodynamic description for the first of the two particles: marginalization over one particle, bipartite structure with information flows, and the Hamiltonian of mean force formalism. In the limit of time-scale separation where the second particle with a fast relaxation time scale locally equilibrates with respect to the coordinates of the first slowly relaxing particle, the effective thermodynamics resulting from the first and third approach are shown to capture the full thermodynamics and to coincide with each other. In the bipartite approach, the slow part does not, in general, allow for an exact thermodynamic description as the entropic exchange between the particles is ignored. Physically, the second particle effectively becomes part of the heat reservoir. In the limit where the second particle becomes heavy and thus deterministic, the effective thermodynamics of the first two coarse-graining methods coincide with the full one. The Hamiltonian of mean force formalism, however, is shown to be incompatible with that limit. Physically, the second particle becomes a work source. These theoretical results are illustrated using an exactly solvable harmonic model.
Collapse
Affiliation(s)
- Tim Herpich
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Kamran Shayanfard
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
12
|
Dal Cengio S, Levis D, Pagonabarraga I. Linear Response Theory and Green-Kubo Relations for Active Matter. PHYSICAL REVIEW LETTERS 2019; 123:238003. [PMID: 31868450 DOI: 10.1103/physrevlett.123.238003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 05/12/2023]
Abstract
We address the question of how interacting active systems in a nonequilibrium steady state respond to an external perturbation. We establish an extended fluctuation-dissipation theorem for active Brownian particles (ABP), which highlights the role played by the local violation of detailed balance due to activity. By making use of a Markovian approximation we derive closed Green-Kubo expressions for the diffusivity and mobility of ABP and quantify the deviations from the Stokes-Einstein relation. We compute the linear response function to an external force using unperturbed simulations of ABP and compare the results with the analytical predictions of the transport coefficients. Our results show the importance of the interplay between activity and interactions in the departure from equilibrium linear response.
Collapse
Affiliation(s)
- Sara Dal Cengio
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- CECAM Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- CECAM Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| |
Collapse
|
13
|
Lee JS, Park JM, Park H. Thermodynamic uncertainty relation for underdamped Langevin systems driven by a velocity-dependent force. Phys Rev E 2019; 100:062132. [PMID: 31962517 DOI: 10.1103/physreve.100.062132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various processes, such as discrete-time Markov jump processes and overdamped Langevin dynamics. For underdamped dynamics, it has recently been reported that some modification is necessary for application of the TUR. However, the previous TUR for underdamped dynamics is not applicable to a system driven by a velocity-dependent force. In this study, we present a TUR, applicable to a system driven by a velocity-dependent force in the context of underdamped Langevin dynamics, by extending the theory of Vu and Hasegawa [Phys. Rev. E 100, 032130 (2019)2470-004510.1103/PhysRevE.100.032130]. We show that our TUR accurately describes the trade-off properties of a molecular refrigerator (cold damping), Brownian dynamics in a magnetic field, and an active particle system.
Collapse
Affiliation(s)
- Jae Sung Lee
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Jong-Min Park
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Hyunggyu Park
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
14
|
Abstract
We propose a generalization of stochastic thermodynamics to systems of active particles, which move under the combined influence of stochastic internal self-propulsions (activity) and a heat bath. The main idea is to consider joint trajectories of particles' positions and self-propulsions. It is then possible to exploit formal similarity of an active system and a system consisting of two subsystems interacting with different heat reservoirs and coupled by a nonsymmetric interaction. The resulting thermodynamic description closely follows the standard stochastic thermodynamics. In particular, total entropy production, Δs_{tot}, can be decomposed into housekeeping, Δs_{hk}, and excess, Δs_{ex}, parts. Both Δs_{tot} and Δs_{hk} satisfy fluctuation theorems. The average rate of the steady-state housekeeping entropy production can be related to the violation of the fluctuation-dissipation theorem via a Harada-Sasa relation. The excess entropy production enters into a Hatano-Sasa-like relation, which leads to a generalized Clausius inequality involving the change of the system's entropy and the excess entropy production. Interestingly, although the evolution of particles' self-propulsions is free and uncoupled from that of their positions, nontrivial steady-state correlations between these variables lead to the nonzero excess dissipation in the reservoir coupled to the self-propulsions.
Collapse
Affiliation(s)
- Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
15
|
García-García R, Collet P, Truskinovsky L. Guided active particles. Phys Rev E 2019; 100:042608. [PMID: 31771015 DOI: 10.1103/physreve.100.042608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 06/10/2023]
Abstract
To account for the possibility of an externally driven taxis in active systems, we develop a model of a guided active drift which relies on the presence of an external guiding field and a vectorial coupling between the mechanical degrees of freedom and a chemical reaction. To characterize the ability of guided active particles to carry cargo, we generalize the notion of Stokes efficiency extending it to the case of stall conditions. To show the generality of the proposed mechanism, we discuss guided electric circuits capable of turning fluctuations into a directed current without a source of voltage.
Collapse
Affiliation(s)
- Reinaldo García-García
- PMMH, CNRS UMR 7636, ESPCI Paris, Université PSL, 10 rue de Vauquelin, F-75005 Paris, France
| | - Pierre Collet
- CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Lev Truskinovsky
- PMMH, CNRS UMR 7636, ESPCI Paris, Université PSL, 10 rue de Vauquelin, F-75005 Paris, France
| |
Collapse
|
16
|
Chari SSN, Dasgupta C, Maiti PK. Scalar activity induced phase separation and liquid-solid transition in a Lennard-Jones system. SOFT MATTER 2019; 15:7275-7285. [PMID: 31490527 DOI: 10.1039/c9sm00962k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report scalar activity induced phase separation and crystallization in a system of 3-d Lennard-Jones particles taken at state points spanning from the gas to the liquid regime using molecular dynamics simulation (MD). Scalar activity was introduced by increasing the temperature of half of the particles (labeled 'hot') while keeping the temperature of the other half constant at a lower value (labeled 'cold'). The relative temperature difference between the two subsystems is considered as a measure of the activity. From our simulations we observe that the two species tend to phase separate at sufficiently high activity ratio. The extent of separation is quantified by the defined order parameter and the entropy production during this process is determined by employing the two-phase thermodynamic (2PT) model and the standard modified Benedict-Webb-Rubin (MBWR) equation of state for a LJ fluid. We observe that the extent of the phase separation and entropy production increases with the density of the system. From a cluster analysis, we obtain the mean number of clusters ncl, and the mean size of the largest cluster n0 in the system, complementing each other. Bond orientation order parameters reveal that the so formed largest cluster also develops solid-like order consisting of both FCC and HCP packing. The presence of such crystalline order is also supported by a common neighbor analysis.
Collapse
Affiliation(s)
- S Siva Nasarayya Chari
- Department of Physics, Indian Institute of Science, C. V. Raman Ave, Bengaluru 560012, India.
| | | | | |
Collapse
|
17
|
Chakraborti S, Pradhan P. Additivity and density fluctuations in Vicsek-like models of self-propelled particles. Phys Rev E 2019; 99:052604. [PMID: 31212568 DOI: 10.1103/physreve.99.052604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/07/2022]
Abstract
We study coarse-grained density fluctuations in the disordered phase of the paradigmatic Vicsek-like models of self-propelled particles with alignment interactions and random self-propulsion velocities. By numerically integrating a fluctuation-response relation-the direct consequence of an additivity property-we compute logarithm of the large-deviation probabilities of the coarse-grained subsystem density, while the system is in the disordered fluid phase with vanishing macroscopic velocity. The large-deviation probabilities, computed within additivity, agree remarkably well with that obtained from direct microscopic simulations of the models. Our results provide evidence of the existence of an equilibriumlike chemical potential, which governs the coarse-grained density fluctuations in the Vicsek-like models. Moreover, comparison of the particle-number fluctuations among several self-propelled particle systems suggests a common mechanism through which the number fluctuations arise in such systems.
Collapse
Affiliation(s)
- Subhadip Chakraborti
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
18
|
Lee S, Kwon C. Nonequilibrium driven by an external torque in the presence of a magnetic field. Phys Rev E 2019; 99:052142. [PMID: 31212472 DOI: 10.1103/physreve.99.052142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 06/09/2023]
Abstract
We investigate a two-dimensional motion of a colloid in a harmonic trap driven out of equilibrium by an external nonconservative force producing a torque in the presence of a uniform magnetic field applied perpendicular to the plane of motion. We find a circulating steady-state current diagnostic to nonequilibrium. Unlikely in the overdamped limit, inertial motion requires a sufficient central force to reach steady state. The magnetic field can enhance or depress central force depending on its direction. We find that steady state exists only for a proper range of parameters such as mass, viscosity coefficient, stiffness of the harmonic potential, and the magnetic field. We rigorously derive the existence condition for the steady state. We examine the combined influence of nonconservative force and magnetic field on nonequilibrium characteristics. We find non-Boltzmann steady-state probability density function and circulating probability current. We show that nonnegative entropy production is composed of usual heat dissipation and unconventional contribution from velocity-dependence of the Lorentz force. We derive the full list of correlation functions, including position-velocity correlation function originated from nonequilibrium circulation. We finally give rigorous expression for the violation of fluctuation-dissipation relation. We verify our analytical results by using the Monte Carlo simulation.
Collapse
Affiliation(s)
- Sangyun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea
| | - Chulan Kwon
- Department of Physics, Myongji University, Yongin, Gyeonggi-Do, 17058, Korea
| |
Collapse
|
19
|
Gupta N, Chaudhuri A, Chaudhuri D. Morphological and dynamical properties of semiflexible filaments driven by molecular motors. Phys Rev E 2019; 99:042405. [PMID: 31108695 DOI: 10.1103/physreve.99.042405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 06/09/2023]
Abstract
We consider an explicit model of a semiflexible filament moving in two dimensions on a gliding assay of motor proteins, which attach to and detach from filament segments stochastically, with a detachment rate that depends on the local load experienced. Attached motor proteins move along the filament to one of its ends with a velocity that varies nonlinearly with the motor protein extension. The resultant force on the filament drives it out of equilibrium. The distance from equilibrium is reflected in the end-to-end distribution, modified bending stiffness, and a transition to spiral morphology of the polymer. The local stress dependence of activity results in correlated fluctuations in the speed and direction of the center of mass leading to a series of ballistic-diffusive crossovers in its dynamics.
Collapse
Affiliation(s)
- Nisha Gupta
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar - 140306, Punjab, India
| | - Abhishek Chaudhuri
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar - 140306, Punjab, India
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhaba National Institute, Anushaktigar, Mumbai 400094, India
| |
Collapse
|
20
|
Nemoto T, Fodor É, Cates ME, Jack RL, Tailleur J. Optimizing active work: Dynamical phase transitions, collective motion, and jamming. Phys Rev E 2019; 99:022605. [PMID: 30934223 DOI: 10.1103/physreve.99.022605] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 06/09/2023]
Abstract
Active work measures how far the local self-forcing of active particles translates into real motion. Using population Monte Carlo methods, we investigate large deviations in the active work for repulsive active Brownian disks. Minimizing the active work generically results in dynamical arrest; in contrast, despite the lack of aligning interactions, trajectories of high active work correspond to a collectively moving, aligned state. We use heuristic and analytic arguments to explain the origin of dynamical phase transitions separating the arrested, typical, and aligned regimes.
Collapse
Affiliation(s)
- Takahiro Nemoto
- Philippe Meyer Institute for Theoretical Physics, Physics Department, École Normale Supérieure & PSL Research University, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Étienne Fodor
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Michael E Cates
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Julien Tailleur
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/P7, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
| |
Collapse
|
21
|
Ehrich J, Kahlen M. Approximating microswimmer dynamics by active Brownian motion: Energetics and efficiency. Phys Rev E 2019; 99:012118. [PMID: 30780203 DOI: 10.1103/physreve.99.012118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 06/09/2023]
Abstract
We consider the dynamics of a microswimmer and show that they can be approximated by active Brownian motion. The swimmer is modeled by coupled overdamped Langevin equations with periodic driving. We compare the energy dissipation of the real swimmer to that of the active Brownian motion model, finding that the latter can massively underestimate the complete dissipation. This discrepancy is related to the inability to infer the full dissipation from partial observation of the complete system. We introduce an efficiency that measures how much of the dissipated energy is spent on forward propulsion.
Collapse
Affiliation(s)
- Jannik Ehrich
- Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany
| | - Marcel Kahlen
- Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany
| |
Collapse
|
22
|
Shankar S, Marchetti MC. Hidden entropy production and work fluctuations in an ideal active gas. Phys Rev E 2018; 98:020604. [PMID: 30253539 DOI: 10.1103/physreve.98.020604] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Indexed: 11/07/2022]
Abstract
Collections of self-propelled particles that move persistently by continuously consuming free energy are a paradigmatic example of active matter. In these systems, unlike Brownian "hot colloids," the breakdown of detailed balance yields a continuous production of entropy at steady state, even for an ideal active gas. We quantify the irreversibility for a noninteracting active particle in two dimensions by treating both conjugated and time-reversed dynamics. By starting with underdamped dynamics, we identify a hidden rate of entropy production required to maintain persistence and prevent the rapidly relaxing momenta from thermalizing, even in the limit of very large friction. Additionally, comparing two popular models of self-propulsion with identical dissipation on average, we find that the fluctuations and large deviations in work done are markedly different, providing thermodynamic insight into the varying extents to which macroscopically similar active matter systems may depart from equilibrium.
Collapse
Affiliation(s)
- Suraj Shankar
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA.,and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - M Cristina Marchetti
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA.,and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
23
|
Chun HM, Durang X, Noh JD. Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force. Phys Rev E 2018; 97:032117. [PMID: 29776022 DOI: 10.1103/physreve.97.032117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 06/08/2023]
Abstract
We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.
Collapse
Affiliation(s)
- Hyun-Myung Chun
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Xavier Durang
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 02504, Korea
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
24
|
Abstract
This paper investigates the effect of the form of an obstacle on the time that a crowd takes to evacuate a room, using a toy model. Pedestrians are modeled as active soft matter moving toward a point with intended velocities. An obstacle is placed in front of the exit, and it has one of four shapes: a cylindrical column, a triangular prism, a quadratic prism, or a diamond prism. Numerical results indicate that the evacuation-completion time depends on the shape of the obstacle. Obstacles with a circular cylinder (C.C.) shape yield the shortest evacuation-completion time in the proposed model.
Collapse
Affiliation(s)
- Ryosuke Yano
- Tokio, Marine and Nichido Risk Consulting Co. Ltd., 1-5-1 Otemachi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
25
|
Mandal D, Klymko K, DeWeese MR. Entropy Production and Fluctuation Theorems for Active Matter. PHYSICAL REVIEW LETTERS 2017; 119:258001. [PMID: 29303303 DOI: 10.1103/physrevlett.119.258001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 05/18/2023]
Abstract
Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framework of stochastic thermodynamics to active matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single, stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with explicit numerical studies.
Collapse
Affiliation(s)
- Dibyendu Mandal
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Katherine Klymko
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
26
|
Cagnetta F, Corberi F, Gonnella G, Suma A. Large Fluctuations and Dynamic Phase Transition in a System of Self-Propelled Particles. PHYSICAL REVIEW LETTERS 2017; 119:158002. [PMID: 29077467 DOI: 10.1103/physrevlett.119.158002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 06/07/2023]
Abstract
We study the statistics, in stationary conditions, of the work W_{τ} done by the active force in different systems of self-propelled particles in a time τ. We show the existence of a critical value W_{τ}^{†} such that fluctuations with W_{τ}>W_{τ}^{†} correspond to configurations where interaction between particles plays a minor role whereas those with W_{τ}<W_{τ}^{†} represent states with single particles dragged by clusters. This twofold behavior is fully mirrored by the probability distribution P(W_{τ}) of the work, which does not obey the large-deviation principle for W_{τ}<W_{τ}^{†}. This pattern of behavior can be interpreted as due to a phase transition occurring at the level of fluctuating quantities and an order parameter is correspondingly identified.
Collapse
Affiliation(s)
- F Cagnetta
- Dipartimento di Fisica, Università di Bari, and Sezione INFN di Bari, via Amendola 173, 70126 Bari, Italy
| | - F Corberi
- Dipartimento di Fisica E.R.Caianiello and INFN, Gruppo Collegato di Salerno, and CNISM, Unità di Salerno, Università di Salerno, via Giovanni Paolo II 132, 8408 Fisciano (SA), Italy
| | - G Gonnella
- Dipartimento di Fisica, Università di Bari, and Sezione INFN di Bari, via Amendola 173, 70126 Bari, Italy
| | - A Suma
- SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
27
|
Lee HK, Lahiri S, Park H. Nonequilibrium steady states in Langevin thermal systems. Phys Rev E 2017; 96:022134. [PMID: 28950478 DOI: 10.1103/physreve.96.022134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 06/07/2023]
Abstract
Equilibrium is characterized by its fundamental properties, such as the detailed balance, the fluctuation-dissipation relation, and no heat dissipation. Based on the stochastic thermodynamics, we show that these three properties are equivalent to each other in conventional Langevin thermal systems with microscopic reversibility. Thus, a conventional steady state has either all three properties (equilibrium) or none of them (nonequilibrium). In contrast, with velocity-dependent forces breaking the microscopic reversibility, we prove that the detailed balance and the fluctuation-dissipation relation mutually exclude each other, and no equivalence relation is possible between any two of the three properties. This implies that a steady state of Langevin systems with velocity-dependent forces may maintain some equilibrium properties but not all of them. Our results are illustrated with a few example systems.
Collapse
Affiliation(s)
- Hyun Keun Lee
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Sourabh Lahiri
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Hyunggyu Park
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
28
|
Heat, temperature and Clausius inequality in a model for active Brownian particles. Sci Rep 2017; 7:46496. [PMID: 28429787 PMCID: PMC5399351 DOI: 10.1038/srep46496] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production.
Collapse
|
29
|
Chaudhuri D. Entropy production by active particles: Coupling of odd and even functions of velocity. Phys Rev E 2016; 94:032603. [PMID: 27739815 DOI: 10.1103/physreve.94.032603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Indexed: 06/06/2023]
Abstract
Nonequilibrium stochastic dynamics of several active Brownian systems are modeled in terms of nonlinear velocity dependent force. In general, this force may consist of both even and odd functions of velocity. We derive the expression for total entropy production in such systems using the Fokker-Planck equation. The result is consistent with the expression for stochastic entropy production in the reservoir that we obtain from probabilities of time-forward and time-reversed trajectories, leading to fluctuation theorems. Numerical simulation is used to find probability distribution of entropy production, which shows good agreement with the detailed fluctuation theorem.
Collapse
Affiliation(s)
- Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India and Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
30
|
Fodor É, Nardini C, Cates ME, Tailleur J, Visco P, van Wijland F. How Far from Equilibrium Is Active Matter? PHYSICAL REVIEW LETTERS 2016; 117:038103. [PMID: 27472145 DOI: 10.1103/physrevlett.117.038103] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 05/18/2023]
Abstract
Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.
Collapse
Affiliation(s)
- Étienne Fodor
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Cesare Nardini
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Michael E Cates
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Paolo Visco
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Frédéric van Wijland
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
31
|
Shim PS, Chun HM, Noh JD. Macroscopic time-reversal symmetry breaking at a nonequilibrium phase transition. Phys Rev E 2016; 93:012113. [PMID: 26871030 DOI: 10.1103/physreve.93.012113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 06/05/2023]
Abstract
We study the entropy production in a globally coupled Brownian particles system that undergoes an order-disorder phase transition. Entropy production is a characteristic feature of nonequilibrium dynamics with broken detailed balance. We find that the entropy production rate is subextensive in the disordered phase and extensive in the ordered phase. It is found that the entropy production rate per particle vanishes in the disordered phase and becomes positive in the ordered phase following critical scaling laws. We derive the scaling relations for associated critical exponents. The disordered phase exemplifies a case where the entropy production is subextensive with the broken detailed balance.
Collapse
Affiliation(s)
- Pyoung-Seop Shim
- Department of Physics, University of Seoul, Seoul 130-743, Korea
| | - Hyun-Myung Chun
- Department of Physics, University of Seoul, Seoul 130-743, Korea
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 130-743, Korea
- School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea
| |
Collapse
|
32
|
Nourhani A, Crespi VH, Lammert PE. Gaussian memory in kinematic matrix theory for self-propellers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062304. [PMID: 25615090 DOI: 10.1103/physreve.90.062304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 06/04/2023]
Abstract
We extend the kinematic matrix ("kinematrix") formalism [Phys. Rev. E 89, 062304 (2014)], which via simple matrix algebra accesses ensemble properties of self-propellers influenced by uncorrelated noise, to treat Gaussian correlated noises. This extension brings into reach many real-world biological and biomimetic self-propellers for which inertia is significant. Applying the formalism, we analyze in detail ensemble behaviors of a 2D self-propeller with velocity fluctuations and orientation evolution driven by an Ornstein-Uhlenbeck process. On the basis of exact results, a variety of dynamical regimes determined by the inertial, speed-fluctuation, orientational diffusion, and emergent disorientation time scales are delineated and discussed.
Collapse
Affiliation(s)
- Amir Nourhani
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vincent H Crespi
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul E Lammert
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|