1
|
Boushehri S, Holey H, Brosz M, Gumbsch P, Pastewka L, Aponte-Santamaría C, Gräter F. O-glycans Expand Lubricin and Attenuate Its Viscosity and Shear Thinning. Biomacromolecules 2024; 25:3893-3908. [PMID: 38815979 PMCID: PMC11238335 DOI: 10.1021/acs.biomac.3c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Lubricin, an intrinsically disordered glycoprotein, plays a pivotal role in facilitating smooth movement and ensuring the enduring functionality of synovial joints. The central domain of this protein serves as a source of this excellent lubrication and is characterized by its highly glycosylated, negatively charged, and disordered structure. However, the influence of O-glycans on the viscosity of lubricin remains unclear. In this study, we employ molecular dynamics simulations in the absence and presence of shear, along with continuum simulations, to elucidate the intricate interplay between O-glycans and lubricin and the impact of O-glycans on lubricin's conformational properties and viscosity. We found the presence of O-glycans to induce a more extended conformation in fragments of the disordered region of lubricin. These O-glycans contribute to a reduction in solution viscosity but at the same time weaken shear thinning at high shear rates, compared to nonglycosylated systems with the same density. This effect is attributed to the steric and electrostatic repulsion between the fragments, which prevents their conglomeration and structuring. Our computational study yields a mechanistic mechanism underlying previous experimental observations of lubricin and paves the way to a more rational understanding of its function in the synovial fluid.
Collapse
Affiliation(s)
- Saber Boushehri
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Hannes Holey
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
- Department
of Microsystems Engineering, University
of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Matthias Brosz
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
| | - Peter Gumbsch
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
- Fraunhofer
IWM, Wöhlerstraße
11, Freiburg 79108, Germany
| | - Lars Pastewka
- Department
of Microsystems Engineering, University
of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
| | - Frauke Gräter
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
2
|
García Daza FA, Puertas AM, Cuetos A, Patti A. Microrheology of isotropic and liquid-crystalline phases of hard rods by dynamic Monte Carlo simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Rauscher PM, Schweizer KS, Rowan SJ, de Pablo JJ. Dynamics of poly[n]catenane melts. J Chem Phys 2020; 152:214901. [PMID: 32505155 DOI: 10.1063/5.0007573] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inspired by advances in the chemical synthesis of interlocking polymer architectures, extensive molecular dynamics simulations have been conducted to study the dynamical properties of poly[n]catenanes-polymers composed entirely of interlocking rings-in the melt state. Both the degree of polymerization (number of links) and the number of beads per ring are systematically varied, and the results are compared to linear and ring polymers. A simple Rouse-like model is presented, and its analytical solution suggests a decomposition of the dynamics into "ring-like" and "linear-like" regimes at short and long times, respectively. In agreement with this picture, multiple sub-diffusive regimes are observed in the monomer mean-squared-displacements even though interchain entanglement is not prevalent in the system. However, the Rouse-type model does not account for the topological effects of the mechanical bonds, which significantly alter the dynamics at intermediate length scales both within the rings and at the chain segment scales. The stress relaxation in the system is extremely rapid and may be conveniently separated into ring-like and linear-like contributions, again in agreement with the Rouse picture. However, the viscosity has a non-monotonic dependence on the ring size for long chains, which disagrees strongly with theoretical predictions. This unexpected observation cannot be explained in terms of chain disentanglement and is inconsistent with other measures of polymer relaxation. Possible mechanisms for this behavior are proposed and implications for materials design are discussed.
Collapse
Affiliation(s)
- Phillip M Rauscher
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801-3028, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Xi L. Molecular simulation for predicting the rheological properties of polymer melts. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1605600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li Xi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Li SJ, Qian HJ, Lu ZY. Translational and rotational dynamics of an ultra-thin nanorod probe particle in linear polymer melts. Phys Chem Chem Phys 2018; 20:20996-21007. [DOI: 10.1039/c8cp03653e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translational and rotational dynamics of a single rigid ultra-thin nanorod probe particle in linear polymer melts are investigated using coarse-grained molecular dynamics (CG-MD) simulations.
Collapse
Affiliation(s)
- Shu-Jia Li
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| |
Collapse
|
6
|
Karim M, Indei T, Schieber JD, Khare R. Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations. Phys Rev E 2016; 93:012501. [PMID: 26871112 DOI: 10.1103/physreve.93.012501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/07/2022]
Abstract
Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012)PLEEE81539-375510.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length d_{T}, in addition to those length scales already relevant: monomer bead size d, probe size R, polymer radius of gyration R_{g}, simulation box size L, shear wave penetration length Δ, and wave period Λ. Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d≳Λ; medium inertia is important and IGSER is required when R≳Λ; and the probe should not experience hydrodynamic interaction with its periodic images, L≳Δ. These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as M_{w}^{3}. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness L_{S} of the shell around the particle that contains the added mass, L_{S}>d. We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.
Collapse
Affiliation(s)
- Mir Karim
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409, USA
| | - Tsutomu Indei
- Center for Molecular Study of Condensed Soft Matter, and Department of Chemical and Biological Engineering, Illinois Institute of Technology, 3440 S. Dearborn Street, Chicago, Illinois 60616, USA
| | - Jay D Schieber
- Center for Molecular Study of Condensed Soft Matter, and Department of Chemical and Biological Engineering, Illinois Institute of Technology, 3440 S. Dearborn Street, Chicago, Illinois 60616, USA.,Department of Physics, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, USA.,Department of Applied Mathematics, Illinois Institute of Technology, 10 West 32nd Street, Chicago, Illinois 60616, USA
| | - Rajesh Khare
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409, USA
| |
Collapse
|
7
|
Kuhnhold A, Paul W. Active one-particle microrheology of an unentangled polymer melt studied by molecular dynamics simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042601. [PMID: 25974519 DOI: 10.1103/physreve.91.042601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 06/04/2023]
Abstract
We present molecular dynamics simulations for active one-particle microrheology of an unentangled polymer melt. The tracer particle is forced to oscillate by an oscillating harmonic potential, which models an experiment using optical tweezers. The amplitude and phase shift of this oscillation are related to the complex shear modulus of the polymer melt. In the linear response regime at low frequencies, the active microrheology gives the same result as the passive microrheology, where the thermal motion of a tracer particle is related to the complex modulus. We expand the analysis to include full hydrodynamic effects instead of stationary Stokes friction only, and show that different approaches suggested in the literature lead to completely different results, and that none of them improves on the description using the stationary Stokes friction.
Collapse
Affiliation(s)
- A Kuhnhold
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - W Paul
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
8
|
|
9
|
Kuhnhold A, Paul W. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation. J Chem Phys 2014; 141:124907. [DOI: 10.1063/1.4896151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|