1
|
Diaw A, Barros K, Haack J, Junghans C, Keenan B, Li YW, Livescu D, Lubbers N, McKerns M, Pavel RS, Rosenberger D, Sagert I, Germann TC. Multiscale simulation of plasma flows using active learning. Phys Rev E 2020; 102:023310. [PMID: 32942385 DOI: 10.1103/physreve.102.023310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022]
Abstract
Plasma flows encountered in high-energy-density experiments display features that differ from those of equilibrium systems. Nonequilibrium approaches such as kinetic theory (KT) capture many, if not all, of these phenomena. However, KT requires closure information, which can be computed from microscale simulations and communicated to KT. We present a concurrent heterogeneous multiscale approach that couples molecular dynamics (MD) with KT in the limit of near-equilibrium flows. To reduce the cost of gathering information from MD, we use active learning to train neural networks on MD data obtained by randomly sampling a small subset of the parameter space. We apply this method to a plasma interfacial mixing problem relevant to warm dense matter, showing considerable computational gains when compared with the full kinetic-MD approach. We find that our approach enables the probing of Coulomb coupling physics across a broad range of temperatures and densities that are inaccessible with current theoretical models.
Collapse
Affiliation(s)
- A Diaw
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - K Barros
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - J Haack
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - C Junghans
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - B Keenan
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Y W Li
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - D Livescu
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - N Lubbers
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - M McKerns
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - R S Pavel
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - D Rosenberger
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - I Sagert
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - T C Germann
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
2
|
White AJ, Ticknor C, Meyer ER, Kress JD, Collins LA. Multicomponent mutual diffusion in the warm, dense matter regime. Phys Rev E 2019; 100:033213. [PMID: 31639979 DOI: 10.1103/physreve.100.033213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 11/07/2022]
Abstract
We present the formulation, simulations, and results for multicomponent mutual diffusion coefficients in the warm, dense matter regime. While binary mixtures have received considerable attention for mass transport, far fewer studies have addressed ternary and more complex systems. We therefore explicitly examine ternary systems utilizing the Maxwell-Stefan formulation that relates diffusion to gradients in the chemical potential. Onsager coefficients then connect the macroscopic diffusion to microscopic particle motions, evinced in trajectories characterized by positions and velocities, through various autocorrelation functions (ACFs). These trajectories are generated by molecular dynamics (MD) simulations either through the Born-Oppenheimer approximation, which treats the ions classically and the electrons quantum-mechanically by an orbital-free density-functional theory, or through a classical MD approach with Yukawa pair-potentials, whose effective ionizations and electron screening length derive from quantal considerations. We employ the reference-mean form of the ACFs and determine the center-of-mass coefficients through a simple reference-frame-dependent similarity transformation. The Onsager terms in turn determine the mutual diffusion coefficients. We examine a representative sample of ternary mixtures as a function of density and temperature from those with only light elements (D-Li-C, D-Li-Al) to those with highly asymmetric mass components (D-Li-Cu, D-Li-Ag, H-C-Ag). We also follow trends in the diffusion as a function of number concentration and evaluated the efficacy of various approximations such as the Darken approximation.
Collapse
Affiliation(s)
- A J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Ticknor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - E R Meyer
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J D Kress
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - L A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
3
|
Liu L, Li ZG, Dai JY, Chen QF, Chen XR. Quantum molecular dynamics study on the proton exchange, ionic structures, and transport properties of warm dense hydrogen-deuterium mixtures. Phys Rev E 2018; 97:063204. [PMID: 30011461 DOI: 10.1103/physreve.97.063204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Comprehensive knowledge of physical properties such as equation of state (EOS), proton exchange, dynamic structures, diffusion coefficients, and viscosities of hydrogen-deuterium mixtures with densities from 0.1 to 5 g/cm^{3} and temperatures from 1 to 50 kK has been presented via quantum molecular dynamics (QMD) simulations. The existing multi-shock experimental EOS provides an important benchmark to evaluate exchange-correlation functionals. The comparison of simulations with experiments indicates that a nonlocal van der Waals density functional (vdW-DF1) produces excellent results. Fraction analysis of molecules using a weighted integral over pair distribution functions was performed. A dissociation diagram together with a boundary where the proton exchange (H_{2}+D_{2}⇌2HD) occurs was generated, which shows evidence that the HD molecules form as the H_{2} and D_{2} molecules are almost 50% dissociated. The mechanism of proton exchange can be interpreted as a process of dissociation followed by recombination. The ionic structures at extreme conditions were analyzed by the effective coordination number model. High-order cluster, circle, and chain structures can be founded in the strongly coupled warm dense regime. The present QMD diffusion coefficient and viscosity can be used to benchmark two analytical one-component plasma (OCP) models: the Coulomb and Yukawa OCP models.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Zhi-Guo Li
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Jia-Yu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Qi-Feng Chen
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Xiang-Rong Chen
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
4
|
Haack JR, Hauck CD, Murillo MS. Interfacial mixing in high-energy-density matter with a multiphysics kinetic model. Phys Rev E 2017; 96:063310. [PMID: 29347378 DOI: 10.1103/physreve.96.063310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 06/07/2023]
Abstract
We have extended a recently developed multispecies, multitemperature Bhatnagar-Gross-Krook model [Haack et al., J. Stat. Phys. 168, 822 (2017)JSTPBS0022-471510.1007/s10955-017-1824-9], to include multiphysics capabilities that enable modeling of a wider range of physical conditions. In terms of geometry, we have extended from the spatially homogeneous setting to one spatial dimension. In terms of the physics, we have included an atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, but for larger length and time scales and for much higher temperatures than can be simulated using molecular dynamics. Relative to molecular dynamics, the kinetic model greatly extends the temperature regime and the spatiotemporal scales over which we are able to model. In our numerical results we observe hydrogen from the ablator material jetting into the fuel during the early stages of the implosion and compare the relative size of various diffusion components (Fickean diffusion, electrodiffusion, and barodiffusion) that drive this process. We also examine kinetic effects, such as anisotropic distributions and velocity separation, in order to determine when this problem can be described with a hydrodynamic model.
Collapse
Affiliation(s)
- Jeffrey R Haack
- Computational Physics and Methods Group, Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Cory D Hauck
- Computational and Applied Mathematics Group, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831 and Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
5
|
Li D, Wang C, Yan J, Fu ZG, Zhang P. Structural and transport properties of ammonia along the principal Hugoniot. Sci Rep 2017; 7:12338. [PMID: 28951594 PMCID: PMC5615040 DOI: 10.1038/s41598-017-12429-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
We investigate, via quantum molecular dynamics simulations, the structural and transport properties of ammonia along the principal Hugoniot for temperatures up to 10 eV and densities up to 2.6 g/cm3. With the analysis of the molecular dynamics trajectories by use of the bond auto-correlation function, we identify three distinct pressure-temperature regions for local chemical structures of ammonia. We derive the diffusivity and viscosity of strong correlated ammonia with high accuracy through fitting the velocity and stress-tensor autocorrelation functions with complex functional form which includes structures and multiple time scales. The statistical error of the transport properties is estimated. It is shown that the diffusivity and viscosity behave in a distinctly different manner at these three regimes and thus present complex features. In the molecular fluid regime, the hydrogen atoms have almost the similar diffusivity as nitrogen and the viscosity is dominated by the kinetic contribution. When entering into the mixture regime, the transport behavior of the system remarkably changes due to the stronger ionic coupling, and the viscosity is determined to decrease gradually and achieve minimum at about 2.0 g/cm3 on the Hugoniot. In the plasma regime, the hydrogen atoms diffuse at least twice as fast as the nitrogen atoms.
Collapse
Affiliation(s)
- Dafang Li
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China
| | - Cong Wang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China.,Center for Applied Physics and Technology, Peking University, Beijing, 100871, People's Republic of China
| | - Jun Yan
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China.,Center for Applied Physics and Technology, Peking University, Beijing, 100871, People's Republic of China
| | - Zhen-Guo Fu
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China. .,Center for Applied Physics and Technology, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
6
|
McKelvey A, Kemp GE, Sterne PA, Fernandez-Panella A, Shepherd R, Marinak M, Link A, Collins GW, Sio H, King J, Freeman RR, Hua R, McGuffey C, Kim J, Beg FN, Ping Y. Thermal conductivity measurements of proton-heated warm dense aluminum. Sci Rep 2017; 7:7015. [PMID: 28765571 PMCID: PMC5539319 DOI: 10.1038/s41598-017-07173-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022] Open
Abstract
Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.
Collapse
Affiliation(s)
- A McKelvey
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,University of Michigan, Nuclear Engineering Department, Ann Arbor, MI, 48109, USA
| | - G E Kemp
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - P A Sterne
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | | | - R Shepherd
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - M Marinak
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - A Link
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - G W Collins
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - H Sio
- Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA, 02139, USA
| | - J King
- The Ohio State University, Physics Department, Columbus, Ohio, 43210, USA
| | - R R Freeman
- The Ohio State University, Physics Department, Columbus, Ohio, 43210, USA
| | - R Hua
- University of California San Diego, Center for Energy Research, La Jolla, CA, 92093, USA
| | - C McGuffey
- University of California San Diego, Center for Energy Research, La Jolla, CA, 92093, USA
| | - J Kim
- University of California San Diego, Center for Energy Research, La Jolla, CA, 92093, USA
| | - F N Beg
- University of California San Diego, Center for Energy Research, La Jolla, CA, 92093, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| |
Collapse
|
7
|
White AJ, Collins LA, Kress JD, Ticknor C, Clérouin J, Arnault P, Desbiens N. Correlation and transport properties for mixtures at constant pressure and temperature. Phys Rev E 2017; 95:063202. [PMID: 28709340 DOI: 10.1103/physreve.95.063202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 06/07/2023]
Abstract
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm^{3}, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.
Collapse
Affiliation(s)
- Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Lee A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Joel D Kress
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Christopher Ticknor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | |
Collapse
|
8
|
Haralson Z, Goree J. Overestimation of Viscosity by the Green-Kubo Method in a Dusty Plasma Experiment. PHYSICAL REVIEW LETTERS 2017; 118:195001. [PMID: 28548538 DOI: 10.1103/physrevlett.118.195001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 06/07/2023]
Abstract
The Green-Kubo (GK) method is widely used in simulations of strongly coupled plasmas to obtain the viscosity coefficient. However, the method's applicability, which is often taken for granted, has not been tested experimentally. We report an experimental test using a two-dimensional strongly coupled dusty plasma. We find that the GK viscosity is ≈60% larger than the result of a benchmark hydrodynamic method, obtained in the same experiment with the same conditions except for the presence of shear.
Collapse
Affiliation(s)
- Zach Haralson
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
| | - J Goree
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
9
|
Shaffer NR, Baalrud SD, Daligault J. Effective potential theory for diffusion in binary ionic mixtures. Phys Rev E 2017; 95:013206. [PMID: 28208485 DOI: 10.1103/physreve.95.013206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Self-diffusion and interdiffusion coefficients of binary ionic mixtures are evaluated using the effective potential theory (EPT), and the predictions are compared with the results of molecular dynamics simulations. We find that EPT agrees with molecular dynamics from weak coupling well into the strong-coupling regime, which is a similar range of coupling strengths as previously observed in comparisons with the one-component plasma. Within this range, typical relative errors of approximately 20% and worst-case relative errors of approximately 40% are observed. We also examine the Darken model, which approximates the interdiffusion coefficients based on the self-diffusion coefficients.
Collapse
Affiliation(s)
- Nathaniel R Shaffer
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Scott D Baalrud
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jérôme Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
A DYNAMIC DENSITY FUNCTIONAL THEORY APPROACH TO DIFFUSION IN WHITE DWARFS AND NEUTRON STAR ENVELOPES. ACTA ACUST UNITED AC 2016. [DOI: 10.3847/0004-637x/829/1/16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ticknor C, Kress JD, Collins LA, Clérouin J, Arnault P, Decoster A. Transport properties of an asymmetric mixture in the dense plasma regime. Phys Rev E 2016; 93:063208. [PMID: 27415378 DOI: 10.1103/physreve.93.063208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 06/06/2023]
Abstract
We study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.
Collapse
Affiliation(s)
- Christopher Ticknor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Joel D Kress
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Lee A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | |
Collapse
|
12
|
Haxhimali T, Rudd RE, Cabot WH, Graziani FR. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:053110. [PMID: 26651805 DOI: 10.1103/physreve.92.053110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 06/05/2023]
Abstract
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.
Collapse
Affiliation(s)
- Tomorr Haxhimali
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Robert E Rudd
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - William H Cabot
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Frank R Graziani
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
13
|
Molvig K, Vold EL, Dodd ES, Wilks SC. Nonlinear structure of the diffusing gas-metal interface in a thermonuclear plasma. PHYSICAL REVIEW LETTERS 2014; 113:145001. [PMID: 25325648 DOI: 10.1103/physrevlett.113.145001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 06/04/2023]
Abstract
This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp "front," or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given.
Collapse
Affiliation(s)
- Kim Molvig
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Erik L Vold
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Evan S Dodd
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Scott C Wilks
- Lawrence Livermore National Laboratory, Livermore, California, 94550, USA
| |
Collapse
|
14
|
Graziani FR, Bauer JD, Murillo MS. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033104. [PMID: 25314544 DOI: 10.1103/physreve.90.033104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Indexed: 06/04/2023]
Abstract
Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations.
Collapse
Affiliation(s)
- F R Graziani
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - J D Bauer
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - M S Murillo
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| |
Collapse
|