1
|
Hagg A, Kliemank ML, Asteroth A, Wilde D, Bedrunka MC, Foysi H, Reith D. Efficient Quality Diversity Optimization of 3D Buildings through 2D Pre-Optimization. EVOLUTIONARY COMPUTATION 2023; 31:287-307. [PMID: 37023355 DOI: 10.1162/evco_a_00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Quality diversity algorithms can be used to efficiently create a diverse set of solutions to inform engineers' intuition. But quality diversity is not efficient in very expensive problems, needing hundreds of thousands of evaluations. Even with the assistance of surrogate models, quality diversity needs hundreds or even thousands of evaluations, which can make its use infeasible. In this study, we try to tackle this problem by using a pre-optimization strategy on a lower-dimensional optimization problem and then map the solutions to a higher-dimensional case. For a use case to design buildings that minimize wind nuisance, we show that we can predict flow features around 3D buildings from 2D flow features around building footprints. For a diverse set of building designs, by sampling the space of 2D footprints with a quality diversity algorithm, a predictive model can be trained that is more accurate than when trained on a set of footprints that were selected with a space-filling algorithm like the Sobol sequence. Simulating only 16 buildings in 3D, a set of 1,024 building designs with low predicted wind nuisance is created. We show that we can produce better machine learning models by producing training data with quality diversity instead of using common sampling techniques. The method can bootstrap generative design in a computationally expensive 3D domain and allow engineers to sweep the design space, understanding wind nuisance in early design phases.
Collapse
Affiliation(s)
- Alexander Hagg
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, 53757, Germany
| | - Martin L Kliemank
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, 53757, Germany
| | - Alexander Asteroth
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, 53757, Germany
| | - Dominik Wilde
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, 53757, Germany
- Dpt. of Mechanical Engineering, University of Siegen, Siegen, 57076, Germany
| | - Mario C Bedrunka
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, 53757, Germany
- Dpt. of Mechanical Engineering, University of Siegen, Siegen, 57076, Germany
| | - Holger Foysi
- Dpt. of Mechanical Engineering, University of Siegen, Siegen, 57076, Germany
| | - Dirk Reith
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, 53757, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| |
Collapse
|
2
|
Tang X, Yu Y, Oztekin A. Asymptotic method for entropic multiple relaxation time model in lattice Boltzmann method. Phys Rev E 2022; 106:015303. [PMID: 35974631 DOI: 10.1103/physreve.106.015303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
To improve the numerical stability of the lattice Boltzmann method, Karlin et al. [Phys. Rev. E 90, 031302(R) (2014)10.1103/PhysRevE.90.031302] proposed the entropic multiple relaxation time (EMRT) collision model. The idea behind EMRT is to construct an optimal postcollision state by maximizing its local entropy value. The critical step of the EMRT model is to solve the entropy maximization problem under certain constraints, which is often computationally expensive and even not feasible. In this paper, we propose to employ perturbation theory and obtain an asymptotic solution to the maximum entropy state. With mathematical analysis of particular cases under relaxed constraints, we obtain the unperturbed form of the original problem and derive the asymptotic solution. We show that the asymptotic solution well approximates the optimal states; thus, our approach provides an efficient way to solve the constrained maximum entropy problem in the EMRT model. Also, we use the same idea of the EMRT model for the initial condition of the distribution function and propose to leave the entropy function to determine the missing information at the initial nodes. Finally, we numerically verify that the simulation results of the EMRT model obtained via the perturbation theory agree well with the exact solution to the Taylor-Green vortex problem. Furthermore, we also demonstrate that the EMRT model exhibits excellent stability performance for under-resolved simulations in the doubly periodic shear layer flow problem.
Collapse
Affiliation(s)
- Xiangshuo Tang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yue Yu
- Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
3
|
Huang F, Noël R, Berg P, Hosseini SA. Simulation of the FDA nozzle benchmark: A lattice Boltzmann study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106863. [PMID: 35617810 DOI: 10.1016/j.cmpb.2022.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Contrary to flows in small intracranial vessels, many blood flow configurations such as those found in aortic vessels and aneurysms involve larger Reynolds numbers and, therefore, transitional or turbulent conditions. Dealing with such systems require both robust and efficient numerical methods. METHODS We assess here the performance of a lattice Boltzmann solver with full Hermite expansion of the equilibrium and central Hermite moments collision operator at higher Reynolds numbers, especially for under-resolved simulations. To that end the food and drug administration's benchmark nozzle is considered at three different Reynolds numbers covering all regimes: (1) laminar at a Reynolds number of 500, (2) transitional at a Reynolds number of 3500, and (3) low-level turbulence at a Reynolds number of 6500. RESULTS The lattice Boltzmann results are compared with previously published inter-laboratory experimental data obtained by particle image velocimetry. Our results show good agreement with the experimental measurements throughout the nozzle, demonstrating the good performance of the solver even in under-resolved simulations. CONCLUSION In this manner, fast but sufficiently accurate numerical predictions can be achieved for flow configurations of practical interest regarding medical applications.
Collapse
Affiliation(s)
- Feng Huang
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany
| | - Romain Noël
- Univ. Gustave Eiffel, Inria, Cosys/SII, I4S, Bouguenais F-44344, France
| | - Philipp Berg
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany; Research Campus STIMULATE, University of Magdeburg "Otto von Guericke", Magdeburg, D-39106, Germany
| | - Seyed Ali Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany; Department of Mechanical and Process Engineering, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
4
|
Toward a Lattice Boltzmann Method for Solids—Application to Static Equilibrium of Isotropic Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This work presents a novel method for simulating the behavior of solid objects with the Lattice Boltzmann Method (LBM). To introduce and validate our proposed framework, comparative studies are performed for computing the static equilibrium of isotropic materials. Remembering that the LBM has strong theoretical foundations in the Boltzmann equation; this latter is firstly adjusted to solid motions, through its Boltzmann-Vlasov special case. This is indeed the case when combined with a suitable mean-field external force term to set a reliable solid framework. Secondly, a library is built and plugged on the top of the well-known Parallel Lattice Boltzmann Solver (PaLaBoS) library. Numerical implementations based on the previous equation of motion for solids are led in a non-intrusive manner so as to present results with an easy and flawless reproducibility. A newly designed Lattice Boltzmann Method for Solids (LBMS) is exhibited through a few key algorithms, showing the overall operation plus the major improvements. Efficiency, robustness and accuracy of the proposed approach are illustrated and contrasted with a commercial Finite Element Analysis (FEA) software. The obtained results reveal considerable potential concerning static and further dynamic simulations involving solid constitutive laws within the LBM formalism.
Collapse
|
5
|
Wang G, Fei L, Luo KH. Unified lattice Boltzmann method with improved schemes for multiphase flow simulation: Application to droplet dynamics under realistic conditions. Phys Rev E 2022; 105:045314. [PMID: 35590633 DOI: 10.1103/physreve.105.045314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
As a powerful mesoscale approach, the lattice Boltzmann method (LBM) has been widely used for the numerical study of complex multiphase flows. Recently, Luo et al. [Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 379, 20200397 (2021)10.1098/rsta.2020.0397] proposed a unified lattice Boltzmann method (ULBM) to integrate the widely used lattice Boltzmann collision operators into a unified framework. In this study, we incorporate additional features into this ULBM in order to simulate multiphase flow under realistic conditions. A nonorthogonal moment set [Fei et al., Phys. Rev. E 97, 053309 (2018)10.1103/PhysRevE.97.053309] and the entropic-multi-relaxation-time (KBC) lattice Boltzmann model are used to construct the collision operator. An extended combined pseudopotential model is proposed to realize multiphase flow simulation at high-density ratio with tunable surface tension over a wide range. The numerical results indicate that the improved ULBM can significantly decrease the spurious velocities and adjust the surface tension without appreciably changing the density ratio. The ULBM is validated through reproducing various droplet dynamics experiments, such as binary droplet collision and droplet impingement on superhydrophobic surfaces. Finally, the extended ULBM is applied to complex droplet dynamics, including droplet pancake bouncing and droplet splashing. The maximum Weber number and Reynolds number in the simulation reach 800 and 7200, respectively, at a density ratio of 1000. The study demonstrates the generality and versatility of ULBM for incorporating schemes to tackle challenging multiphase problems.
Collapse
Affiliation(s)
- Geng Wang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Linlin Fei
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
6
|
Ilyin O. Discrete-velocity Boltzmann model: Regularization and linear stability. Phys Rev E 2022; 105:045312. [PMID: 35590549 DOI: 10.1103/physreve.105.045312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
A discrete-velocity Boltzmann model for a nine-velocity lattice is considered. Compared to the conventional lattice Boltzmann (LB) schemes the collisions for the model are defined explicitly. Space and time discretization of the model is based on the collide and stream method; in addition, the regularization of the collision term is proposed. It is demonstrated that the regularized model can be represented as a two-relaxation-time LB model of a special type. The scheme is compared to the Onsager regularized (a specific filtered Galilean invariant model) and recursively regularized LB equations in terms of stability and dissipation properties, and linear stability analysis is performed. Several numerical experiments are carried out: double shear layer, lid-driven cavity flow, and propagation of acoustic and shear waves are considered for different grid resolutions, Mach and Reynolds numbers. It is shown that free parameters in the model corresponding to collision cross sections can be adjusted in such a way that the dissipation and stability properties can be controlled.
Collapse
Affiliation(s)
- Oleg Ilyin
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Vavilova - 44,2, Moscow 119333, Russia
| |
Collapse
|
7
|
Luo KH, Fei L, Wang G. A unified lattice Boltzmann model and application to multiphase flows. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200397. [PMID: 34455840 DOI: 10.1098/rsta.2020.0397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
In this work, we develop a unified lattice Boltzmann model (ULBM) framework that can seamlessly integrate the widely used lattice Boltzmann collision operators, including the Bhatnagar-Gross-Krook or single-relation-time, multiple-relaxation-time, central-moment or cascaded lattice Boltzmann method and multiple entropic operators (KBC). Such a framework clarifies the relations among the existing collision operators and greatly facilitates model comparison and development as well as coding. Importantly, any LB model or treatment constructed for a specific collision operator could be easily adopted by other operators. We demonstrate the flexibility and power of the ULBM framework through three multiphase flow problems: the rheology of an emulsion, splashing of a droplet on a liquid film and dynamics of pool boiling. Further exploration of ULBM for a wide variety of phenomena would be both realistic and beneficial, making the LBM more accessible to non-specialists. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
Collapse
Affiliation(s)
- Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Linlin Fei
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), 8092 Zürich, Switzerland
| | - Geng Wang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
8
|
Simonis S, Haussmann M, Kronberg L, Dörfler W, Krause MJ. Linear and brute force stability of orthogonal moment multiple-relaxation-time lattice Boltzmann methods applied to homogeneous isotropic turbulence. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200405. [PMID: 34455847 DOI: 10.1098/rsta.2020.0405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Multiple-relaxation-time (MRT) lattice Boltzmann methods (LBM) based on orthogonal moments exhibit lattice Mach number dependent instabilities in diffusive scaling. The present work renders an explicit formulation of stability sets for orthogonal moment MRT LBM. The stability sets are defined via the spectral radius of linearized amplification matrices of the MRT collision operator with variable relaxation frequencies. Numerical investigations are carried out for the three-dimensional Taylor-Green vortex benchmark at Reynolds number 1600. Extensive brute force computations of specific relaxation frequency ranges for the full test case are opposed to the von Neumann stability set prediction. Based on that, we prove numerically that a scan over the full wave space, including scaled mean flow variations, is required to draw conclusions on the overall stability of LBM in turbulent flow simulations. Furthermore, the von Neumann results show that a grid dependence is hardly possible to include in the notion of linear stability for LBM. Lastly, via brute force stability investigations based on empirical data from a total number of 22 696 simulations, the existence of a deterministic influence of the grid resolution is deduced. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
Collapse
Affiliation(s)
- Stephan Simonis
- Lattice Boltzmann Research Group, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Marc Haussmann
- Lattice Boltzmann Research Group, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Louis Kronberg
- Lattice Boltzmann Research Group, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Willy Dörfler
- Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Mathias J Krause
- Lattice Boltzmann Research Group, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
9
|
Buzzicotti M, Tauzin G. Inertial range statistics of the entropic lattice Boltzmann method in three-dimensional turbulence. Phys Rev E 2021; 104:015302. [PMID: 34412200 DOI: 10.1103/physreve.104.015302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/10/2021] [Indexed: 11/06/2022]
Abstract
We present a quantitative analysis of the inertial range statistics produced by entropic lattice Boltzmann method (ELBM) in the context of three-dimensional homogeneous and isotropic turbulence. ELBM is a promising mesoscopic model particularly interesting for the study of fully developed turbulent flows because of its intrinsic scalability and its unconditional stability. In the hydrodynamic limit, the ELBM is equivalent to the Navier-Stokes equations with an extra eddy viscosity term. From this macroscopic formulation, we have derived a new hydrodynamical model that can be implemented as a large-eddy simulation closure. This model is not positive definite, hence, able to reproduce backscatter events of energy transferred from the subgrid to the resolved scales. A statistical comparison of both mesoscopic and macroscopic entropic models based on the ELBM approach is presented and validated against fully resolved direct numerical simulations. Besides, we provide a second comparison of the ELBM with respect to the well-known Smagorinsky closure. We found that ELBM is able to extend the energy spectrum scaling range preserving at the same time the simulation stability. Concerning the statistics of higher order, inertial range observables, ELBM accuracy is shown to be comparable with other approaches such as Smagorinsky model.
Collapse
Affiliation(s)
- Michele Buzzicotti
- Department of Physics and INFN, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Guillaume Tauzin
- Department of Physics and INFN, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy.,Chair of Applied Mathematics and Numerical Analysis, Bergische Universität Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany
| |
Collapse
|
10
|
Jonnalagadda A, Sharma A, Agrawal A. Onsager-regularized lattice Boltzmann method: A nonequilibrium thermodynamics-based regularized lattice Boltzmann method. Phys Rev E 2021; 104:015313. [PMID: 34412301 DOI: 10.1103/physreve.104.015313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/01/2021] [Indexed: 11/06/2022]
Abstract
The regularized class of lattice Boltzmann methods (LBMs) leverage the potency of the standard lattice-Bhatnagar-Gross-Krook method by filtering out spurious nonhydrodynamic moments from the moment space; this is achieved through evaluating regularized populations via a multiscale or a Hermite polynomial expansion approach. In this paper, we propose an alternative approach for evaluating the lattice populations. This approach is based on a kinetic theory that is consistent with nonequilibrium thermodynamics and obeys the Onsager-reciprocity principle. The proposed method is verified and validated for a number of canonical problems such as the athermal shock tube, the double periodic shear layer, the lid driven cavity, flow past square cylinder, and Poiseuille flow at nonvanishing Knudsen numbers. Additionally, the proposed method is compared to existing regularized LBM schemes and is shown to yield significant improvement in the stability and accuracy of the simulations.
Collapse
Affiliation(s)
- Anirudh Jonnalagadda
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| | - Atul Sharma
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| |
Collapse
|
11
|
Qin F, Zhao J, Kang Q, Brunschwiler T, Derome D, Carmeliet J. Lattice Boltzmann modeling of heat conduction enhancement by colloidal nanoparticle deposition in microporous structures. Phys Rev E 2021; 103:023311. [PMID: 33736117 DOI: 10.1103/physreve.103.023311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 01/25/2021] [Indexed: 11/07/2022]
Abstract
Drying of colloidal suspension towards the exploitation of the resultant nanoparticle deposition has been applied in different research and engineering fields. Recent experimental studies have shown that neck-based thermal structure (NTS) by colloidal nanoparticle deposition between microsize filler particle configuration (FPC) can significantly enhance vertical heat conduction in innovative three-dimensional chip stacks [Brunschwiler et al., J. Electron. Packag. 138, 041009 (2016)10.1115/1.4034927]. However, an in-depth understanding of the mechanisms of colloidal liquid drying, neck formation, and their influence on heat conduction is still lacking. In this paper, using the lattice Boltzmann method, we model neck formation in FPCs and evaluate the thermal performances of resultant NTSs. The colloidal liquid is found drying continuously from the periphery of the microstructure to its center with a decreasing drying rate. With drying, more necks of smaller size are formed between adjacent filler particles, while fewer necks of larger size are formed between filler particle and the top/bottom plate of the FPCs. The necks, forming critical throats between the filler particles, are found to improve the heat flux significantly, leading to an overall heat conduction enhancement of 2.4 times. In addition, the neck count, size, and distribution as well as the thermal performance of NTSs are found to be similar for three different FPCs at a constant filler particle volume fraction. Our simulation results on neck formation and thermal performances of NTSs are in good agreement with experimental results. This demonstrates that the current lattice Boltzmann models are accurate in modeling drying of colloidal suspension and heat conduction in microporous structures, and have high potentials to study other problems such as surface coating, salt transport, salt crystallization, and food preserving.
Collapse
Affiliation(s)
- Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland.,Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Jianlin Zhao
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Qinjun Kang
- Earth and Environment Sciences Division (EES-16), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA
| | - Thomas Brunschwiler
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Dominique Derome
- Dep. of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke Qc J1K 2R1 Canada
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| |
Collapse
|
12
|
Wissocq G, Coreixas C, Boussuge JF. Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods. Phys Rev E 2020; 102:053305. [PMID: 33327122 DOI: 10.1103/physreve.102.053305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
The present work proposes a general methodology to study stability and isotropy properties of lattice Boltzmann (LB) schemes. As a first investigation, such a methodology is applied to better understand these properties in the context of regularized approaches. To this extent, linear stability analyses of two-dimensional models are proposed: the standard Bhatnagar-Gross-Krook collision model, the original precollision regularization, and the recursive regularized model, where off-equilibrium distributions are partially computed thanks to a recursive formula. A systematic identification of the physical content carried by each LB mode is done by analyzing the eigenvectors of the linear systems. Stability results are then numerically confirmed by performing simulations of shear and acoustic waves. This work allows drawing fair conclusions on the stability properties of each model. In particular, among the aforementioned models, recursive regularization turns out to be the most stable one for the D2Q9 lattice, especially in the zero-viscosity limit. Two major properties shared by every regularized model are highlighted: (1) a mode filtering property and (2) an incorrect, and broadly anisotropic, dissipation rate of the modes carrying physical waves in under-resolved conditions. The first property is the main source of increased stability, especially for the recursive regularization. It is a direct consequence of the reconstruction of off-equilibrium populations before each collision process, decreasing the rank of the system of discrete equations. The second property seems to be related to numerical errors directly induced by the equilibration of high-order moments. In such a case, this property is likely to occur with any collision model that follows such a stabilization methodology.
Collapse
Affiliation(s)
| | - Christophe Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | | |
Collapse
|
13
|
Fučík R, Galabov R, Pauš P, Eichler P, Klinkovský J, Straka R, Tintěra J, Chabiniok R. Investigation of phase-contrast magnetic resonance imaging underestimation of turbulent flow through the aortic valve phantom: experimental and computational study using lattice Boltzmann method. MAGMA (NEW YORK, N.Y.) 2020; 33:649-662. [PMID: 32108906 DOI: 10.1007/s10334-020-00837-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The accuracy of phase-contrast magnetic resonance imaging (PC-MRI) measurement is investigated using a computational fluid dynamics (CFD) model with the objective to determine the magnitude of the flow underestimation due to turbulence behind a narrowed valve in a phantom experiment. MATERIALS AND METHODS An acrylic stationary flow phantom is used with three insertable plates mimicking aortic valvular stenoses of varying degrees. Positive and negative horizontal fluxes are measured at equidistant slices using standard PC-MRI sequences by 1.5T and 3T systems. The CFD model is based on the 3D lattice Boltzmann method (LBM). The experimental and simulated data are compared using the Bland-Altman-derived limits of agreement. Based on the LBM results, the turbulence is quantified and confronted with the level of flow underestimation. RESULTS LBM gives comparable results to PC-MRI for valves up to moderate stenosis on both field strengths. The flow magnitude through a severely stenotic valve was underestimated due to signal void in the regions of turbulent flow behind the valve, consistently with the level of quantified turbulence intensity. DISCUSSION Flow measured by PC-MRI is affected by noise and turbulence. LBM can simulate turbulent flow efficiently and accurately, it has therefore the potential to improve clinical interpretation of PC-MRI.
Collapse
Affiliation(s)
- Radek Fučík
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Prague, Czech Republic.
| | - Radek Galabov
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Pauš
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Prague, Czech Republic
| | - Pavel Eichler
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Prague, Czech Republic
| | - Jakub Klinkovský
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Prague, Czech Republic
| | - Robert Straka
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Prague, Czech Republic
- Department of Heat Engineering and Environment Protection, AGH University of Science and Technology, Kraków, Poland
| | - Jaroslav Tintěra
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Radomír Chabiniok
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Prague, Czech Republic
- Inria, Palaiseau, France
- LMS, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
- School of Biomedical Engineering & Imaging Sciences (BMEIS), St Thomas' Hospital, King's College London, London, UK
- Division of Pediatric Cardiology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75235-7701, USA
| |
Collapse
|
14
|
Wang L. Enhanced multi-relaxation-time lattice Boltzmann model by entropic stabilizers. Phys Rev E 2020; 102:023307. [PMID: 32942451 DOI: 10.1103/physreve.102.023307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 07/23/2020] [Indexed: 11/07/2022]
Abstract
The difficulty of choice of relaxation rates in multi-relaxation-time lattice Boltzmann model (MRT-LBM) is surmounted by solution of least-square problem of entropic stabilizer equations. Relaxation rates in the enhanced MRT-LBM are evolving with time rather than remain constants. To derive entropic stabilizer equations, nonequilibrium population is split into different modes in terms of column vectors in the inverse transform matrix. The entropic stabilizer equations are achieved by minimization of H-function. Different moment representations in MRT-LBM, such as Gram-Schmidt orthogonal moment, natural moment, and central moment, are tested for double periodic shear flow, shock tube problem, and lid-driven cavity flow, which demonstrates the potential of enhanced MRT-LBM.
Collapse
Affiliation(s)
- Long Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
15
|
Chai Z, Shi B. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements. Phys Rev E 2020; 102:023306. [PMID: 32942355 DOI: 10.1103/physreve.102.023306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we first present a unified framework of multiple-relaxation-time lattice Boltzmann (MRT-LB) method for the Navier-Stokes and nonlinear convection-diffusion equations where a block-lower-triangular-relaxation matrix and an auxiliary source distribution function are introduced. We then conduct a comparison of the four popular analysis methods (Chapman-Enskog analysis, Maxwell iteration, direct Taylor expansion, and recurrence equations approaches) that have been used to obtain the macroscopic Navier-Stokes and nonlinear convection-diffusion equations from the MRT-LB method and show that from mathematical point of view, these four analysis methods can give the same equations at the second-order of expansion parameters. Finally, we give some elements that are needed in the implementation of the MRT-LB method and also find that some available LB models can be obtained from this MRT-LB method.
Collapse
Affiliation(s)
- Zhenhua Chai
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China and Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Baochang Shi
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China and Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
16
|
Latt J, Coreixas C, Beny J, Parmigiani A. Efficient supersonic flow simulations using lattice Boltzmann methods based on numerical equilibria. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190559. [PMID: 32833583 PMCID: PMC7333948 DOI: 10.1098/rsta.2019.0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 05/22/2023]
Abstract
A double-distribution-function based lattice Boltzmann method (DDF-LBM) is proposed for the simulation of polyatomic gases in the supersonic regime. The model relies on a numerical equilibrium that has been extensively used by discrete velocity methods since the late 1990s. Here, it is extended to reproduce an arbitrary number of moments of the Maxwell-Boltzmann distribution. These extensions to the standard 5-constraint (mass, momentum and energy) approach lead to the correct simulation of thermal, compressible flows with only 39 discrete velocities in 3D. The stability of this BGK-LBM is reinforced by relying on Knudsen-number-dependent relaxation times that are computed analytically. Hence, high Reynolds-number, supersonic flows can be simulated in an efficient and elegant manner. While the 1D Riemann problem shows the ability of the proposed approach to handle discontinuities in the zero-viscosity limit, the simulation of the supersonic flow past a NACA0012 aerofoil confirms the excellent behaviour of this model in a low-viscosity and supersonic regime. The flow past a sphere is further simulated to investigate the 3D behaviour of our model in the low-viscosity supersonic regime. The proposed model is shown to be substantially more efficient than the previous 5-moment D3Q343 DDF-LBM for both CPU and GPU architectures. It then opens up a whole new world of compressible flow applications that can be realistically tackled with a purely LB approach. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
Collapse
Affiliation(s)
- Jonas Latt
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
- FlowKit-Numeca Group Ltd, Route d’Oron 2, 1010 Lausanne, Switzerland
- e-mail:
| | - Christophe Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - Joël Beny
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - Andrea Parmigiani
- FlowKit-Numeca Group Ltd, Route d’Oron 2, 1010 Lausanne, Switzerland
| |
Collapse
|
17
|
Krämer A, Wilde D, Küllmer K, Reith D, Foysi H. Pseudoentropic derivation of the regularized lattice Boltzmann method. Phys Rev E 2019; 100:023302. [PMID: 31574640 DOI: 10.1103/physreve.100.023302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/07/2022]
Abstract
The lattice Boltzmann method (LBM) facilitates efficient simulations of fluid turbulence based on advection and collision of local particle distribution functions. To ensure stable simulations on underresolved grids, the collision operator must prevent drastic deviations from local equilibrium. This can be achieved by various methods, such as the multirelaxation time, entropic, quasiequilibrium, regularized, and cumulant schemes. Complementing a part of a unified theoretical framework of these schemes, the present work presents a derivation of the regularized lattice Boltzmann method (RLBM), which follows a recently introduced entropic multirelaxation time LBM by Karlin, Bösch, and Chikatamarla (KBC). It is shown that both methods can be derived by locally maximizing a quadratic Taylor expansion of the entropy function. While KBC expands around the local equilibrium distribution, the RLBM is recovered by expanding entropy around a global equilibrium. Numerical tests were performed to elucidate the role of pseudoentropy maximization in these models. Simulations of a two-dimensional shear layer show that the RLBM successfully reproduces the largest eddies even on a 16×16 grid, while the conventional LBM becomes unstable for grid resolutions of 128×128 and lower. The RLBM suppresses spurious vortices more effectively than KBC. In contrast, simulations of the three-dimensional Taylor-Green and Kida vortices show that KBC performs better in resolving small scale vortices, outperforming the RLBM by a factor of 1.8 in terms of the effective Reynolds number.
Collapse
Affiliation(s)
- Andreas Krämer
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dominik Wilde
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| | - Knut Küllmer
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| | - Dirk Reith
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
18
|
Coreixas C, Chopard B, Latt J. Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations. Phys Rev E 2019; 100:033305. [PMID: 31639944 DOI: 10.1103/physreve.100.033305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 05/05/2023]
Abstract
Over the last decades, several types of collision models have been proposed to extend the validity domain of the lattice Boltzmann method (LBM), each of them being introduced in its own formalism. This article proposes a formalism that describes all these methods within a common mathematical framework, and in this way allows us to draw direct links between them. Here, the focus is put on single and multirelaxation time collision models in either their raw moment, central moment, cumulant, or regularized form. In parallel with that, several bases (nonorthogonal, orthogonal, Hermite) are considered for the polynomial expansion of populations. General relationships between moments are first derived to understand how moment spaces are related to each other. In addition, a review of collision models further sheds light on collision models that can be rewritten in a linear matrix form. More quantitative mathematical studies are then carried out by comparing explicit expressions for the post-collision populations. Thanks to this, it is possible to deduce the impact of both the polynomial basis (raw, Hermite, central, central Hermite, cumulant) and the inclusion of regularization steps on isothermal LBMs. Extensive results are provided for the D1Q3, D2Q9, and D3Q27 lattices, the latter being further extended to the D3Q19 velocity discretization. Links with the most common two and multirelaxation time collision models are also provided for the sake of completeness. This work ends by emphasizing the importance of an accurate representation of the equilibrium state, independently of the choice of moment space. As an addition to the theoretical purpose of this article, general instructions are provided to help the reader with the implementation of the most complicated collision models.
Collapse
Affiliation(s)
- Christophe Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - Bastien Chopard
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - Jonas Latt
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| |
Collapse
|
19
|
Feng Y, Boivin P, Jacob J, Sagaut P. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows. Phys Rev E 2019; 100:023304. [PMID: 31574747 DOI: 10.1103/physreve.100.023304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 06/10/2023]
Abstract
An extended version of the hybrid recursive regularized lattice-Boltzmann model which incorporates external force is developed to simulate humid air flows with phase change mechanisms under the Boussinesq approximation. Mass and momentum conservation equations are solved by a regularized lattice Boltzmann approach well suited for high Reynolds number flows, whereas the energy and humidity related equations are solved by a finite volume approach. Two options are investigated to account for cloud formation in atmospheric flow simulations. The first option considers a single conservation equation for total water and an appropriate invariant variable of temperature. In the other approach, liquid and vapor are considered via two separated equations, and phase transition is accounted for via a relaxation procedure. The obtained models are then systematically validated on four well-established benchmark problems including a double diffusive Rayleigh Bénard convection of humid air, two- and three-dimensional thermal moist rising bubble under convective atmospheric environment, as well as a shallow cumulus convection in the framework of large-eddy simulation.
Collapse
Affiliation(s)
- Yongliang Feng
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 Marseille, France
| | - Pierre Boivin
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 Marseille, France
| | - Jérôme Jacob
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 Marseille, France
| | - Pierre Sagaut
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 Marseille, France
| |
Collapse
|
20
|
Hosseini SA, Coreixas C, Darabiha N, Thévenin D. Stability of the lattice kinetic scheme and choice of the free relaxation parameter. Phys Rev E 2019; 99:063305. [PMID: 31330723 DOI: 10.1103/physreve.99.063305] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 11/07/2022]
Abstract
The lattice kinetic scheme (LKS), a modified version of the classical single relaxation time (SRT) lattice Boltzmann method, was initially developed as a suitable numerical approach for non-Newtonian flow simulations and a way to reduce memory consumption of the original SRT approach. The better performances observed for non-Newtonian flows are mainly due to the additional degree of freedom allowing an independent control over the relaxation of higher-order moments, independently from the fluid viscosity. Although widely applied to fluid flow simulations, no theoretical analysis of LKS has been performed. The present work focuses on a systematic von Neumann analysis of the linearized collision operator. Thanks to this analysis, the effects of the modified collision operator on the stability domain and spectral behavior of the scheme are clarified. Results obtained in this study show that correct choices of the "second relaxation coefficient" lead, to a certain extent, to a more consistent dispersion and dissipation for large values of the first relaxation coefficient. Furthermore, appropriate values of this parameter can lead to a larger linear stability domain. At moderate and low values of viscosity, larger values of the free parameter are observed to increase dissipation of kinetic modes, while leaving the acoustic modes untouched and having a less pronounced effect on the convective mode. This increased dissipation leads in general to less pronounced sources of nonlinear instability, thus improving the stability of the LKS.
Collapse
Affiliation(s)
- S A Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany.,Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France.,International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - C Coreixas
- Department of Computer Science, University of Geneva, Geneva, Switzerland
| | - N Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France
| | - D Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany
| |
Collapse
|
21
|
Qin F, Mazloomi Moqaddam A, Del Carro L, Kang Q, Brunschwiler T, Derome D, Carmeliet J. Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures. Phys Rev E 2019; 99:053306. [PMID: 31212433 DOI: 10.1103/physreve.99.053306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A tricoupled hybrid lattice Boltzmann model (LBM) is developed to simulate colloidal liquid evaporation and colloidal particle deposition during the nonisothermal drying of colloidal suspensions in micropore structures. An entropic multiple-relaxation-time multirange pseudopotential two-phase LBM for isothermal interfacial flow is first coupled to an extended temperature equation for simulating nonisothermal liquid drying. Then the coupled model is further coupled with a modified convection diffusion equation to consider the nonisothermal drying of colloidal suspensions. Two drying examples are considered. First, drying of colloidal suspensions in a two-pillar micropore structure is simulated in two dimensions (2D), and the final configuration of colloidal particles is compared with the experimental one. Good agreement is observed. Second, at the temperature of 343.15 K (70^{∘}C), drying of colloidal suspensions in a complex spiral-shaped micropore structure containing 220 pillars is simulated (also in 2D). The drying pattern follows the designed spiral shape due to capillary pumping, i.e., transport of the liquid from larger pores to smaller ones by capillary pressure difference. Since the colloidal particles are passively carried with liquid, they accumulate at the small menisci as drying proceeds. As liquid evaporates at the small menisci, colloidal particles are deposited, eventually forming solid structures between the pillars (primarily), and at the base of the pillars (secondarily). As a result, the particle deposition conforms to the spiral route. Qualitatively, the simulated liquid and particle configurations agree well with the experimental ones during the entire drying process. Quantitatively, the model demonstrates that the evaporation rate and the particle accumulation rate slowly decrease during drying, similar to what is seen in the experimental results, which is due to the reduction of the liquid-vapor interfacial area. In conclusion, the hybrid model shows the capability and accuracy for simulating nonisothermal drying of colloidal suspensions in a complex micropore structure both qualitatively and quantitatively, as it includes all the required physics and captures all the complex features observed experimentally. Such a tricoupled LBM has a high potential to become an efficient numerical tool for further investigation of real and complex engineering problems incorporating drying of colloidal suspensions in porous media.
Collapse
Affiliation(s)
- Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8093, Switzerland
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Ali Mazloomi Moqaddam
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Luca Del Carro
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Qinjun Kang
- Earth and Environment Sciences Division (EES-16), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA
| | - Thomas Brunschwiler
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Dominique Derome
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8093, Switzerland
| |
Collapse
|
22
|
Hajabdollahi F, Premnath KN. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations. Phys Rev E 2018; 97:053303. [PMID: 29906868 DOI: 10.1103/physreve.97.053303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 11/07/2022]
Abstract
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several conclusions are drawn from the analysis of the structure of the non-GI errors and the associated corrections, with particular emphasis on their dependence on the preconditioning parameter. The GI preconditioned central-moment LB method is validated for a number of complex flow benchmark problems and its effectiveness to achieve convergence acceleration and improvement in accuracy is demonstrated.
Collapse
Affiliation(s)
- Farzaneh Hajabdollahi
- Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, Colorado 80124, USA
| | - Kannan N Premnath
- Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, Colorado 80124, USA
| |
Collapse
|
23
|
Ba Y, Wang N, Liu H, Li Q, He G. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology. Phys Rev E 2018; 97:033307. [PMID: 29776031 DOI: 10.1103/physreve.97.033307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 06/08/2023]
Abstract
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Collapse
Affiliation(s)
- Yan Ba
- School of Astronautics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ningning Wang
- School of Energy and Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Haihu Liu
- School of Energy and Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Qiang Li
- School of Astronautics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guoqiang He
- School of Astronautics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
24
|
Küllmer K, Krämer A, Joppich W, Reith D, Foysi H. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies. Phys Rev E 2018; 97:023313. [PMID: 29548255 DOI: 10.1103/physreve.97.023313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 06/08/2023]
Abstract
Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.
Collapse
Affiliation(s)
- Knut Küllmer
- Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Andreas Krämer
- Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Wolfgang Joppich
- Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Dirk Reith
- Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
25
|
Dorschner B, Chikatamarla SS, Karlin IV. Fluid-structure interaction with the entropic lattice Boltzmann method. Phys Rev E 2018; 97:023305. [PMID: 29548176 DOI: 10.1103/physreve.97.023305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 06/08/2023]
Abstract
We propose a fluid-structure interaction (FSI) scheme using the entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid domain in combination with a nonlinear finite element solver for the structural part. We show the validity of the proposed scheme for various challenging setups by comparison to literature data. Beyond validation, we extend the KBC model to multiphase flows and couple it with a finite element method (FEM) solver. Robustness and viability of the entropic multi-relaxation time model for complex FSI applications is shown by simulations of droplet impact on elastic superhydrophobic surfaces.
Collapse
Affiliation(s)
- B Dorschner
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S S Chikatamarla
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - I V Karlin
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
26
|
Flint C, Vahala G. Partial entropic stabilization of lattice Boltzmann magnetohydrodynamics. Phys Rev E 2018; 97:013302. [PMID: 29448429 DOI: 10.1103/physreve.97.013302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 06/08/2023]
Abstract
The entropic lattice Boltzmann algorithm of Karlin et al. [Phys. Rev. E 90, 031302 (2014)PLEEE81539-375510.1103/PhysRevE.90.031302] is partially extended to magnetohydrodynamics, based on the Dellar model of introducing a vector distribution for the magnetic field. This entropic ansatz is now applied only to the scalar particle distribution function so as to permit the many problems entailing magnetic field reversal. A 9-bit lattice is employed for both particle and magnetic distributions for our two-dimensional simulations. The entropic ansatz is benchmarked against our earlier multiple relaxation lattice-Boltzmann model for the Kelvin-Helmholtz instability in a magnetized jet. Other two-dimensional simulations are performed and compared to results determined by more standard direct algorithms: in particular the switch over between the Kelvin-Helmholtz or tearing mode instability of Chen et al. [J. Geophys. Res.: Space Phys. 102, 151 (1997)JGREA20148-022710.1029/96JA03144], and the generalized Orszag-Tang vortex model of Biskamp-Welter [Phys. Fluids B 1, 1964 (1989)PFBPEI0899-822110.1063/1.859060]. Very good results are achieved.
Collapse
Affiliation(s)
- Christopher Flint
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23185, USA
| | - George Vahala
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23185, USA
| |
Collapse
|
27
|
Coreixas C, Wissocq G, Puigt G, Boussuge JF, Sagaut P. Recursive regularization step for high-order lattice Boltzmann methods. Phys Rev E 2017; 96:033306. [PMID: 29346972 DOI: 10.1103/physreve.96.033306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/07/2022]
Abstract
A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 10^{4} to 10^{6}, and where a thorough analysis of the case at Re=3×10^{4} is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.
Collapse
Affiliation(s)
| | | | - Guillaume Puigt
- CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse Cedex, France
| | | | - Pierre Sagaut
- Aix-Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France
| |
Collapse
|
28
|
A Non-Isothermal Chemical Lattice Boltzmann Model Incorporating Thermal Reaction Kinetics and Enthalpy Changes. COMPUTATION 2017. [DOI: 10.3390/computation5030037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Dorschner B, Chikatamarla SS, Karlin IV. Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions. Phys Rev E 2017; 95:063306. [PMID: 28709335 DOI: 10.1103/physreve.95.063306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015)JCTPAH0021-999110.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B. Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016)JFLSA70022-112010.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re=40000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.
Collapse
Affiliation(s)
- B Dorschner
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S S Chikatamarla
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - I V Karlin
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
30
|
Krämer A, Küllmer K, Reith D, Joppich W, Foysi H. Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows. Phys Rev E 2017; 95:023305. [PMID: 28297853 DOI: 10.1103/physreve.95.023305] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 11/07/2022]
Abstract
The lattice Boltzmann method is a simulation technique in computational fluid dynamics. In its standard formulation, it is restricted to regular computation grids, second-order spatial accuracy, and a unity Courant-Friedrichs-Lewy (CFL) number. This paper advances the standard lattice Boltzmann method by introducing a semi-Lagrangian streaming step. The proposed method allows significantly larger time steps, unstructured grids, and higher-order accurate representations of the solution to be used. The appealing properties of the approach are demonstrated in simulations of a two-dimensional Taylor-Green vortex, doubly periodic shear layers, and a three-dimensional Taylor-Green vortex.
Collapse
Affiliation(s)
- Andreas Krämer
- Institute for Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Knut Küllmer
- Institute for Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Dirk Reith
- Institute for Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Wolfgang Joppich
- Institute for Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
31
|
Dorschner B, Frapolli N, Chikatamarla SS, Karlin IV. Grid refinement for entropic lattice Boltzmann models. Phys Rev E 2016; 94:053311. [PMID: 27967135 DOI: 10.1103/physreve.94.053311] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 11/07/2022]
Abstract
We propose a multidomain grid refinement technique with extensions to entropic incompressible, thermal, and compressible lattice Boltzmann models. Its validity and accuracy are assessed by comparison to available direct numerical simulation and experiment for the simulation of isothermal, thermal, and viscous supersonic flow. In particular, we investigate the advantages of grid refinement for the setups of turbulent channel flow, flow past a sphere, Rayleigh-Bénard convection, as well as the supersonic flow around an airfoil. Special attention is paid to analyzing the adaptive features of entropic lattice Boltzmann models for multigrid simulations.
Collapse
Affiliation(s)
- B Dorschner
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - N Frapolli
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S S Chikatamarla
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - I V Karlin
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
32
|
Pareschi G, Frapolli N, Chikatamarla SS, Karlin IV. Conjugate heat transfer with the entropic lattice Boltzmann method. Phys Rev E 2016; 94:013305. [PMID: 27575234 DOI: 10.1103/physreve.94.013305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 06/06/2023]
Abstract
A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.
Collapse
Affiliation(s)
- G Pareschi
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - N Frapolli
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - S S Chikatamarla
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
33
|
Frapolli N, Chikatamarla SS, Karlin IV. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation. Phys Rev E 2016; 93:063302. [PMID: 27415382 DOI: 10.1103/physreve.93.063302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 05/05/2023]
Abstract
We present in detail the recently introduced entropic lattice Boltzmann model for compressible flows [N. Frapolli et al., Phys. Rev. E 92, 061301(R) (2015)PLEEE81539-375510.1103/PhysRevE.92.061301]. The model is capable of simulating a wide range of laminar and turbulent flows, from thermal and weakly compressible flows to transonic and supersonic flows. The theory behind the construction of the model is laid out and its thermohydrodynamic limit is discussed. Based on this theory and the hydrodynamic limit thereof, we also construct the boundary conditions necessary for the simulation of solid walls. We present the inlet and outlet boundary conditions as well as no-slip and free-slip boundary conditions. Details necessary for the implementation of the compressible lattice Boltzmann model are also reported. Finally, simulations of compressible flows are presented, including two-dimensional supersonic and transonic flows around a diamond and a NACA airfoil, the simulation of the Schardin problem, and the three-dimensional simulation of the supersonic flow around a conical geometry.
Collapse
Affiliation(s)
- N Frapolli
- Department of Mechanical and Processes Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S S Chikatamarla
- Department of Mechanical and Processes Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Processes Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
34
|
Zhou L, Qu ZG, Ding T, Miao JY. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media. Phys Rev E 2016; 93:043101. [PMID: 27176384 DOI: 10.1103/physreve.93.043101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 06/05/2023]
Abstract
The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.
Collapse
Affiliation(s)
- L Zhou
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Z G Qu
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - T Ding
- Beijing Key Laboratory of Space Thermal Control Technology, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
| | - J Y Miao
- Beijing Key Laboratory of Space Thermal Control Technology, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
| |
Collapse
|
35
|
|
36
|
Regulski W, Szumbarski J, Łaniewski-Wołłk Ł, Gumowski K, Skibiński J, Wichrowski M, Wejrzanowski T. Pressure drop in flow across ceramic foams—A numerical and experimental study. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.06.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
An Incompressible, Depth-Averaged Lattice Boltzmann Method for Liquid Flow in Microfluidic Devices with Variable Aperture. COMPUTATION 2015. [DOI: 10.3390/computation3040600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Bösch F, Chikatamarla SS, Karlin IV. Entropic multirelaxation lattice Boltzmann models for turbulent flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:043309. [PMID: 26565366 DOI: 10.1103/physreve.92.043309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Indexed: 06/05/2023]
Abstract
We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.
Collapse
Affiliation(s)
- Fabian Bösch
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Shyam S Chikatamarla
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Ilya V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
39
|
Mattila KK, Hegele LA, Philippi PC. Investigation of an entropic stabilizer for the lattice-Boltzmann method. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:063010. [PMID: 26172795 DOI: 10.1103/physreve.91.063010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 06/04/2023]
Abstract
The lattice-Boltzmann (LB) method is commonly used for the simulation of fluid flows at the hydrodynamic level of description. Due to its kinetic theory origins, the standard LB schemes carry more degrees of freedom than strictly needed, e.g., for the approximation of solutions to the Navier-stokes equation. In particular, there is freedom in the details of the so-called collision operator. This aspect was recently utilized when an entropic stabilizer, based on the principle of maximizing local entropy, was proposed for the LB method [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)]. The proposed stabilizer can be considered as an add-on or extension to basic LB schemes. Here the entropic stabilizer is investigated numerically using the perturbed double periodic shear layer flow as a benchmark case. The investigation is carried out by comparing numerical results obtained with six distinct LB schemes. The main observation is that the unbounded, and not explicitly controllable, relaxation time for the higher-order moments will directly influence the leading-order error terms. As a consequence, the order of accuracy and, in general, the numerical behavior of LB schemes are substantially altered. Hence, in addition to systematic numerical validation, more detailed theoretical analysis of the entropic stabilizer is still required in order to properly understand its properties.
Collapse
Affiliation(s)
- Keijo K Mattila
- Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä, Finland and Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Luiz A Hegele
- Department of Petroleum Engineering, State University of Santa Catarina, 88330-668 Balneário Camboriú, Santa Catarina, Brazil
| | - Paulo C Philippi
- Mechanical Engineering Department, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|