1
|
Bhowmik BP, Ness C. Absorbing-state transitions in particulate systems under spatially varying driving. SOFT MATTER 2025; 21:3340-3346. [PMID: 40183707 DOI: 10.1039/d4sm01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Non-equilibrium transitions into absorbing states are widespread, and amorphous materials under cyclic shear have emerged as useful model systems in which to study their properties. Recent work has focused on homogeneous driving in which the shear amplitude is uniform in space, despite most real world flows involving spatially inhomogeneous conditions that are known to produce qualitatively distinct phenomenology. Here we study the absorbing state transition under inhomogeneous driving using a modified random organization model. For smoothly varying driving the steady state results map onto the homogeneous absorbing state phase diagram, with the position of the boundary between absorbing and diffusive states being insensitive to the driving wavelength. The phenomenology is well-described by a one-dimensional generalized continuum model that we pose. For discontinuously varying driving the position of the absorbing phase boundary and the exponent characterising the fraction of active particles are altered relative to the homogeneous case.
Collapse
Affiliation(s)
| | - Christopher Ness
- School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK.
| |
Collapse
|
2
|
Sarkar T, Chaudhuri P, Sain A. Poiseuille Flow of Soft Polycrystals in 2D Rough Channels. PHYSICAL REVIEW LETTERS 2020; 124:158003. [PMID: 32357064 DOI: 10.1103/physrevlett.124.158003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/10/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Polycrystals are partially ordered solids where crystalline order extends over mesoscopic length scales, namely, the grain size. We study the Poisuielle flow of such materials in a rough channel. In general, similar to yield stress fluids, three distinct dynamical states, namely, flowing, stick-slip, and jammed can be observed, with a yield threshold dependent on channel width. Importantly, the interplay between the finite channel width, and the intrinsic ordering scale (the grain size) leads to a new type of spatiotemporal heterogeneity. In wide channels, although the average flow profile remains pluglike, at the underlying granular level, there is vigorous grain remodeling activity resulting from the velocity heterogeneity among the grains. As the channel width approaches typical grain size, the flowing polycrystalline state breaks up into a spatially heterogeneous mixture of flowing liquid like patches and chunks of nearly static grains. Despite these static grains, the average velocity still shows a parabolic profile, dominated by the moving liquidlike patches. However, the solid-liquid front moves at nearly constant speed in the opposite direction of the external drive.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - Pinaki Chaudhuri
- Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Anirban Sain
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
3
|
Abstract
Customarily, crystalline solids are defined to be rigid since they resist changes of shape determined by their boundaries. However, rigid solids cannot exist in the thermodynamic limit where boundaries become irrelevant. Particles in the solid may rearrange to adjust to shape changes eliminating stress without destroying crystalline order. Rigidity is therefore valid only in the metastable state that emerges because these particle rearrangements in response to a deformation, or strain, are associated with slow collective processes. Here, we show that a thermodynamic collective variable may be used to quantify particle rearrangements that occur as a solid is deformed at zero strain rate. Advanced Monte Carlo simulation techniques are then used to obtain the equilibrium free energy as a function of this variable. Our results lead to a unique view on rigidity: While at zero strain a rigid crystal coexists with one that responds to infinitesimal strain by rearranging particles and expelling stress, at finite strain the rigid crystal is metastable, associated with a free energy barrier that decreases with increasing strain. The rigid phase becomes thermodynamically stable when an external field, which penalizes particle rearrangements, is switched on. This produces a line of first-order phase transitions in the field-strain plane that intersects the origin. Failure of a solid once strained beyond its elastic limit is associated with kinetic decay processes of the metastable rigid crystal deformed with a finite strain rate. These processes can be understood in quantitative detail using our computed phase diagram as reference.
Collapse
|
4
|
Menon K, Govindarajan R, Tewari S. Attraction-induced jamming in the flow of foam through a channel. SOFT MATTER 2016; 12:7772-7781. [PMID: 27526347 DOI: 10.1039/c6sm01719c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the flow of a pressure-driven foam through a straight channel using numerical simulations, and examine the effects of a tuneable attractive potential between bubbles. We show that the effect of an attractive potential is to introduce a regime of jamming and stick-slip flow in a channel, and report on the behaviour resulting from varying the strength of the attraction. We find that there is a force threshold below which the flow jams, and upon further increasing the driving force, a crossover from intermittent (stick-slip) to smooth flow is observed. This threshold force below which the foam jams increases linearly with the strength of the attractive potential. By examining the spectra of energy fluctuations, we show that stick-slip flow is characterized by low frequency rearrangements and strongly local behaviour, whereas steady flow shows a broad spectrum of energy drop events and collective behaviour. Our work suggests that the stick-slip and the jamming regimes occur due to the increased stabilization of contact networks by the attractive potential - as the strength of attraction is increased, bubbles are increasingly trapped within networks, and there is a decrease in the number of contact changes.
Collapse
Affiliation(s)
- Karthik Menon
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Narsingi, Hyderabad - 500075, India
| | | | | |
Collapse
|
5
|
Shrivastav GP, Chaudhuri P, Horbach J. Yielding of glass under shear: A directed percolation transition precedes shear-band formation. Phys Rev E 2016; 94:042605. [PMID: 27841596 DOI: 10.1103/physreve.94.042605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Indexed: 06/06/2023]
Abstract
Under external mechanical loading, glassy materials, ranging from soft matter systems to metallic alloys, often respond via formation of inhomogeneous flow patterns, during yielding. These inhomogeneities can be precursors to catastrophic failure, implying that a better understanding of their underlying mechanisms could lead to the design of smarter materials. Here, extensive molecular dynamics simulations are used to reveal the emergence of heterogeneous dynamics in a binary Lennard-Jones glass, subjected to a constant strain rate. At a critical strain, this system exhibits for all considered strain rates a transition towards the formation of a percolating cluster of mobile regions. We give evidence that this transition belongs to the universality class of directed percolation. Only at low shear rates, the percolating cluster subsequently evolves into a transient (but long-lived) shear band with a diffusive growth of its width. Finally, the steady state with a homogeneous flow pattern is reached. In the steady state, percolation transitions also do occur constantly, albeit over smaller strain intervals, to maintain the stationary plastic flow in the system.
Collapse
Affiliation(s)
- Gaurav Prakash Shrivastav
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Mohorič T, Dobnikar J, Horbach J. Two-dimensional magnetic colloids under shear. SOFT MATTER 2016; 12:3142-3148. [PMID: 26877059 DOI: 10.1039/c6sm00023a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Complex rheological properties of soft disordered solids, such as colloidal gels or glasses, inspire a range of novel applications. However, the microscopic mechanisms of their response to mechanical loading are not well understood. Here, we elucidate some aspects of these mechanisms by studying a versatile model system, i.e. two-dimensional superparamagnetic colloids in a precessing magnetic field, whose structure can be tuned from a hexagonal crystal to a disordered gel network by varying the external field opening angle θ. We perform Langevin dynamics simulations subjecting these structures to a constant shear rate and observe three qualitatively different types of material response. In hexagonal crystals (θ = 0°), at a sufficiently low shear rate, plastic flow occurs via successive stress drops at which the stress releases due to the formation of dislocation defects. The gel network at θ = 48°, on the contrary, via bond rearrangement and transient shear banding evolves into a homogeneously stretched network at large strains. The latter structure remains metastable after switching off of the shear. At θ = 50°, the external shear makes the system unstable against phase separation and causes a failure of the network structure leading to the formation of hexagonal close packed clusters interconnected by particle chains. At a microcopic level, our simulations provide insight into some of the mechanisms by which strain localization as well as material failure occur in a simple gel-like network. Furthermore, we demonstrate that new stretched network structures can be generated by the application of shear.
Collapse
Affiliation(s)
- Tomaž Mohorič
- International Research Centre for Soft Matter, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | |
Collapse
|
7
|
Karmakar S, Dasgupta C, Sastry S. Length scales in glass-forming liquids and related systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:016601. [PMID: 26684508 DOI: 10.1088/0034-4885/79/1/016601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.
Collapse
Affiliation(s)
- Smarajit Karmakar
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | | | | |
Collapse
|
8
|
Papenkort S, Voigtmann T. Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid. J Chem Phys 2015; 143:204502. [PMID: 26627963 DOI: 10.1063/1.4936358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a hybrid-lattice Boltzmann (LB) algorithm for calculating the flow of glass-forming fluids that are governed by integral constitutive equations with pronounced nonlinear, non-Markovian dependence of the stresses on the flow history. The LB simulation for the macroscopic flow fields is combined with the mode-coupling theory (MCT) of the glass transition as a microscopic theory, in the framework of the integration-through transients formalism. Using the combined LB-MCT algorithm, pressure-driven planar channel flow is studied for a schematic MCT model neglecting spatial correlations in the microscopic dynamics. The cessation dynamics after removal of the driving pressure gradient shows strong signatures of oscillatory flow both in the macroscopic fields and the microscopic correlation functions.
Collapse
Affiliation(s)
- S Papenkort
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|