1
|
Zhu C, Peng F, Pan D, Yu Z, Lin Z. Numerical study of microorganisms swimming near a convex wall in a Giesekus fluid. Phys Rev E 2025; 111:015103. [PMID: 39972910 DOI: 10.1103/physreve.111.015103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/24/2024] [Indexed: 02/21/2025]
Abstract
The motion of microorganisms in complex fluids stands out as a prominent subject within fluid mechanics. In our study, we utilize the fictitious domain method to investigate the locomotion of squirmers along a convex wall in Giesekus viscoelastic fluids. This study examines the influence of fluid elasticity and wall curvature on squirmer particles, analyzing their movement patterns in detail. Near the convex wall, three distinct behavioral characteristics emerge: scattering, orbiting forward, and orbiting backward. The findings reveal that, compared with Newtonian fluids, squirmers exhibit a stronger tendency to be attracted toward the wall in viscoelastic fluids. This behavior is attributed to the elastic stress of the fluid, which generates a reverse torque on microbial particles, altering their movement direction and hindering their escape from the wall. Notably, as the wall curvature decreases, the likelihood of particles escaping diminishes.
Collapse
Affiliation(s)
- Chenlin Zhu
- China Jiliang University, Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, Hangzhou 310018, China
| | - Fangyuan Peng
- Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Hangzhou 310027, China
| | - Dingyi Pan
- Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Hangzhou 310027, China
| | - Zhaosheng Yu
- Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Hangzhou 310027, China
| | - Zhaowu Lin
- Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Hangzhou 310027, China
| |
Collapse
|
2
|
Unnikrishnan S, Scott RL, Ogundele E, Azad MA, Ishimoto K, Suarez SS, Tung CK. Hybrid motility mechanism of sperm at viscoelastic fluid-solid interface. Sci Rep 2024; 14:21841. [PMID: 39294257 PMCID: PMC11410992 DOI: 10.1038/s41598-024-72816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
To fertilize eggs, sperm must pass through narrow, complex channels filled with viscoelastic fluids in the female reproductive tract. While it is known that the topography of the surfaces plays a role in guiding sperm movement, sperm have been thought of as swimmers, i.e., their motility comes solely from sperm interaction with the surrounding fluid, and therefore, the surfaces have no direct role in the motility mechanism itself. Here, we examined the role of solid surfaces in the movement of sperm in a highly viscoelastic medium. By visualizing the flagellum interaction with surfaces in a microfluidic device, we found that the flagellum stays close to the surface while the kinetic friction between the flagellum and the surface is in the direction of sperm movement, providing thrust. Additionally, the flow field generated by sperm suggests slippage between the viscoelastic fluid and the solid surface, deviating from the no-slip boundary typically used in standard fluid dynamics models. These observations point to hybrid motility mechanisms in sperm involving direct flagellum-surface interaction in addition to flagellum pushing the fluid. This finding signifies an evolutionary strategy of mammalian sperm crucial for their efficient migration through narrow, mucus-filled passages of the female reproductive tract.
Collapse
Affiliation(s)
| | - Robert L Scott
- Department of Physics, North Carolina A&T State University, Greensboro, NC, USA
| | - Emmanuel Ogundele
- Department of Physics, North Carolina A&T State University, Greensboro, NC, USA
| | - Mohammad A Azad
- Department of Chemical, Biological & Bioengineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
| | - Susan S Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Chih Kuan Tung
- Department of Physics, North Carolina A&T State University, Greensboro, NC, USA.
| |
Collapse
|
3
|
Shaik VA, Elfring GJ. Densitaxis: Active particle motion in density gradients. Proc Natl Acad Sci U S A 2024; 121:e2405466121. [PMID: 38935563 PMCID: PMC11228529 DOI: 10.1073/pnas.2405466121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Organisms often swim through density-stratified fluids. Here, we investigate the dynamics of active particles swimming in fluid density gradients and report theoretical evidence of taxis as a result of these gradients (densitaxis). Specifically, we calculate the effect of density stratification on the dynamics of a force- and torque-free spherical squirmer and show that density gradients induce reorientation that tends to align swimming either parallel or normal to the gradient depending on the swimming gait. In particular, swimmers that propel by generating thrust in the front (pullers) rotate to swim parallel to gradients and hence display (positive or negative) densitaxis, while swimmers that propel by generating thrust in the back (pushers) rotate to swim normal to the gradients. This work could be useful to understand the motion of marine organisms in ocean or be leveraged to sort or organize a suspension of active particles by modulating density gradients.
Collapse
Affiliation(s)
- Vaseem A. Shaik
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Gwynn J. Elfring
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
4
|
Unnikrishnan S, Scott R, Ogundele E, Azad M, Ishimoto K, Suarez S, Tung CK. Hybrid motility mechanism of sperm at viscoelastic-solid interface. RESEARCH SQUARE 2024:rs.3.rs-4284452. [PMID: 38746416 PMCID: PMC11092832 DOI: 10.21203/rs.3.rs-4284452/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
To fertilize eggs, sperm must pass through narrow, complex channels filled with viscoelastic fluids in the female reproductive tract. While it is known that the topography of the surfaces plays a role in guiding sperm movement, sperm have been thought of as swimmers, i.e., their motility comes solely from sperm interaction with the surrounding fluid, and therefore, the surfaces have no direct role in the motility mechanism itself. Here, we examined the role of solid surfaces in the movement of sperm in a highly viscoelastic medium. By visualizing the flagellum interaction with surfaces in a microfluidic device, we found that the flagellum stays close to the surface while the kinetic friction between the flagellum and the surface is in the direction of sperm movement, providing thrust. Additionally, the flow field generated by sperm suggests slippage between the viscoelastic fluid and the solid surface, deviating from the no-slip boundary typically used in standard fluid dynamics models. These observations point to hybrid motility mechanisms in sperm involving direct flagellum-surface interaction in addition to flagellum pushing the fluid. This finding signifies an evolutionary strategy of mammalian sperm crucial for their efficient migration through narrow, mucus-filled passages of the female reproductive tract.
Collapse
Affiliation(s)
| | - Robert Scott
- North Carolina Agricultural and Technical State University
| | | | - Mohammad Azad
- North Carolina Agricultural and Technical State University
| | | | | | - Chih Kuan Tung
- North Carolina Agricultural and Technical State University
| |
Collapse
|
5
|
The Hydrodynamics of a Rod-Shaped Squirmer near a Wall. Processes (Basel) 2022. [DOI: 10.3390/pr10091841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hydrodynamic characteristics of a rod-shaped squirmer swimming near a wall were studied numerically using the immersed boundary-lattice Boltzmann method in the swimming Reynolds number range of 0.1 ≤ Res ≤ 2.0, where the number of assembled squirmers was 2 ≤ i ≤ 4 and the distance between two adjacent assembled squirmers was 0.75 d ≤ s ≤ 1.5 d (d is the diameter of a single squirmer). The effect of Res, i and s on the swimming mode of the squirmer was explored. The results showed that there are four swimming modes after the first collision between the rod-shaped squirmer and the wall. There are also four swimming modes when Res changes from 0.1 to 2.0. Puller, pusher and neutral squirmers showed different swimming modes when i changed, and the effect degree of the flow at the previous moment on the squirmer’s motion was different for different values of i. The change in s only affected the trajectory of the squirmer without changing its motion mode. Puller, pusher and neutral squirmers showed different swimming modes and velocity changes when s changed.
Collapse
|
6
|
Ouyang Z, Lin J. Behaviors of a settling microswimmer in a narrow vertical channel. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
A Review on the Some Issues of Multiphase Flow with Self-Driven Particles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiphase flow with self-driven particles is ubiquitous and complex. Exploring the flow properties has both important academic meaning and engineering value. This review emphasizes some recent studies on multiphase flow with self-driven particles: the hydrodynamic interactions between self-propelled/self-rotary particles and passive particles; the aggregation, phase separation and sedimentation of squirmers; the influence of rheological properties on its motion; and the kinematic characteristics of axisymmetric squirmers. Finally, some open problems, challenges, and future directions are highlighted.
Collapse
|
8
|
Nganguia H, Zhu L, Palaniappan D, Pak OS. Squirming in a viscous fluid enclosed by a Brinkman medium. Phys Rev E 2021; 101:063105. [PMID: 32688621 DOI: 10.1103/physreve.101.063105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Cell motility plays important roles in a range of biological processes, such as reproduction and infections. Studies have hypothesized that the ulcer-causing bacterium Helicobacter pylori invades the gastric mucus layer lining the stomach by locally turning nearby gel into sol, thereby enhancing its locomotion through the biological barrier. In this work, we present a minimal theoretical model to investigate how heterogeneity created by a swimmer affects its own locomotion. As a generic locomotion model, we consider the swimming of a spherical squirmer in a purely viscous fluid pocket (representing the liquified or degelled region) surrounded by a Brinkman porous medium (representing the mucus gel). The use of the squirmer model enables an exact, analytical solution to this hydrodynamic problem. We obtain analytical expressions for the swimming speed, flow field, and power dissipation of the swimmer. Depending on the details of surface velocities and fluid properties, our results reveal the existence of a minimum threshold size of mucus gel that a swimmer needs to liquify in order to gain any enhancement in swimming speed. The threshold size can be as much as approximately 30% of the swimmer size. We contrast these predictions with results from previous models and highlight the significant role played by the details of surface actuations. In addition to their biological implications, these results could also inform the design of artificial microswimmers that can penetrate into biological gels for more effective drug delivery.
Collapse
Affiliation(s)
- Herve Nganguia
- Department of Mathematical and Computer Sciences, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575
| | - D Palaniappan
- Department of Mathematics and Statistics, Texas A&M University, Corpus Christi, Texas 78412, USA
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California 95053, USA
| |
Collapse
|
9
|
Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev 2020; 49:8088-8112. [PMID: 32596700 DOI: 10.1039/d0cs00309c] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo. In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of "swallowing a surgeon".
Collapse
Affiliation(s)
- Zhiguang Wu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | | | | | | | | |
Collapse
|
10
|
Daddi-Moussa-Ider A, Lisicki M, Mathijssen AJTM, Hoell C, Goh S, Bławzdziewicz J, Menzel AM, Löwen H. State diagram of a three-sphere microswimmer in a channel. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:254004. [PMID: 29757157 DOI: 10.1088/1361-648x/aac470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geometric confinements are frequently encountered in soft matter systems and in particular significantly alter the dynamics of swimming microorganisms in viscous media. Surface-related effects on the motility of microswimmers can lead to important consequences in a large number of biological systems, such as biofilm formation, bacterial adhesion and microbial activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram of a three-sphere microswimmer under channel confinement in a slit geometry and fully characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers and pullers may further perform a gliding motion and maintain a stable navigation along the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel height while two new stable limit cycles or fixed points that are symmetrically disposed with respect to the channel mid-height emerge. Additionally, we show that an accurate description of the averaged swimming velocity and rotation rate in a channel can be captured analytically using the method of hydrodynamic images, provided that the swimmer size is much smaller than the channel height.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Daddi-Moussa-Ider A, Lisicki M, Hoell C, Löwen H. Swimming trajectories of a three-sphere microswimmer near a wall. J Chem Phys 2018; 148:134904. [DOI: 10.1063/1.5021027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Maciej Lisicki
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Ishimoto K. Guidance of microswimmers by wall and flow: Thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions. Phys Rev E 2017; 96:043103. [PMID: 29347500 DOI: 10.1103/physreve.96.043103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 06/07/2023]
Abstract
The motions of an unsteady circular-disk squirmer and a spherical squirmer have been investigated in the presence of a no-slip infinite wall and a background shear flow in order to clarify the similarities and differences between two- and three-dimensional motions. Despite the similar bifurcation structure of the dynamical system, the stability of the fixed points differs due to the Hamiltonian structure of the disk squirmer. Once the unsteady oscillating surface velocity profile is considered, the disk squirmer can behave in a chaotic manner and cease to be confined in a near-wall region. In contrast, in an unsteady spherical squirmer, the dynamics is well attracted by a stable fixed point. Additional wall contact interactions lead to stable fixed points for the disk squirmer, and, in turn, the surface entrapment of the disk squirmer can be stabilized, regardless of the existence of the background flow. Finally, we consider spherical motion under a background flow. The separated time scales of the surface entrapment (thigmotaxis) and the turning toward the flow direction (rheotaxis) enable us to reduce the dynamics to two-dimensional phase space, and simple weather-vane mechanics can predict squirmer rheotaxis. The analogous structure of the phase plane with the wall contact in two and three dimensions implies that the two-dimensional disk swimmer successfully captures the nonlinear interactions, and thus two-dimensional approximation could be useful in designing microfluidic devices for the guidance of microswimmers and for clarifying the locomotions in a complex geometry.
Collapse
Affiliation(s)
- Kenta Ishimoto
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom; The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan; and Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
De Corato M, D'Avino G. Dynamics of a microorganism in a sheared viscoelastic liquid. SOFT MATTER 2016; 13:196-211. [PMID: 27414249 DOI: 10.1039/c6sm00697c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we investigate the dynamics of a model spherical microorganism, called squirmer, suspended in a viscoelastic fluid undergoing unconfined shear flow. The effect of the interplay of shear flow, fluid viscoelasticity, and self-propulsion on the orientational dynamics is addressed. In the limit of weak viscoelasticity, quantified by the Deborah number, an analytical expression for the squirmer angular velocity is derived by means of the generalized reciprocity theorem. Direct finite element simulations are carried out to study the squirmer dynamics at larger Deborah numbers. Our results show that the orientational dynamics of active microorganisms in a sheared viscoelastic fluid greatly differs from that observed in Newtonian suspensions. Fluid viscoelasticity leads to a drift of the particle orientation vector towards the vorticity axis or the flow-gradient plane depending on the Deborah number, the relative weight between the self-propulsion velocity and the flow characteristic velocity, and the type of swimming. Generally, pullers and pushers show an opposite equilibrium orientation. The results reported in the present paper could be helpful in designing devices where separation of microorganisms, based on their self-propulsion mechanism, is obtained.
Collapse
Affiliation(s)
- Marco De Corato
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| | - Gaetano D'Avino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|