1
|
Suman K, Wagner NJ. Anomalous rheological aging of a model thermoreversible colloidal gel following a thermal quench. J Chem Phys 2022; 157:024901. [DOI: 10.1063/5.0094237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the aging behavior in a well-studied model system comprised of a colloidal suspension of thermoreversible adhesive hard spheres (AHS) but thermally quenched below the gel transition to much larger depths than previously studied. The aging behavior in the model AHS system is monitored by small amplitude oscillatory shear rheology measurements conducted while rapidly quenching from liquid state at 40{degree sign}C to a temperature below the gel temperature and new, anomalous aging behaviors are observed. Shallow quenches lead to monotonic development of the elastic modulus with time consistent with prior reports for the development of a homogeneous gel (Gordon et al., Journal of Rheology 2017). However, for deeper quenches, a unique and new phenomenon is reported - namely after an initial rise in the modulus, a reproducible drop in modulus is observed, followed by a plateau in modulus value. This drop can be gradual or sudden, and the extent of the drop, both depends on quench depth. After this drop in modulus, AHS gel evolves toward a quench-path independent state over the experimental timescale. These effects of the extent of quenching on aging behavior is hypothesized to be a consequence of quenching into different underlying thermodynamic states of colloidal gels and the possible influence of the adhesive glass dynamical arrest for the deepest quenches. The research connects homogeneous gelation with heterogeneous gel formation due to phase separation and shows that the extent of quench can be used as an independent parameter to govern the rheological response of the arrested gel.
Collapse
Affiliation(s)
- Khushboo Suman
- Department of Chemical and Biomolecular Engineering, University of Delaware, United States of America
| | - Norman J Wagner
- Chemical & Bimolecular Engineering Department, University of Delaware Department of Chemical and Biomolecular Engineering, United States of America
| |
Collapse
|
2
|
Behra JS, Thiriez A, Truzzolillo D, Ramos L, Cipelletti L. Controlling the volume fraction of glass-forming colloidal suspensions using thermosensitive host "mesogels". J Chem Phys 2022; 156:134901. [PMID: 35395903 DOI: 10.1063/5.0086822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The key parameter controlling the glass transition of colloidal suspensions is φ, the fraction of the sample volume occupied by the particles. Unfortunately, changing φ by varying an external parameter, e.g., temperature T as in molecular glass formers, is not possible, unless one uses thermosensitive colloidal particles, such as the popular poly(N-isopropylacrylamide) (PNiPAM) microgels. These, however, have several drawbacks, including high deformability, osmotic deswelling, and interpenetration, which complicate their use as a model system to study the colloidal glass transition. Here, we propose a new system consisting of a colloidal suspension of non-deformable spherical silica nanoparticles, in which PNiPAM hydrogel spheres of ∼100-200μm size are suspended. These non-colloidal "mesogels" allow for controlling the sample volume effectively available to the silica nanoparticles and hence their φ, thanks to the T-induced change in mesogels' volume. Using optical microscopy, we first show that the mesogels retain their ability to change size with T when suspended in Ludox suspensions, similarly as in water. We then show that their size is independent of the sample thermal history such that a well-defined, reversible relationship between T and φ may be established. Finally, we use space-resolved dynamic light scattering to demonstrate that, upon varying T, our system exhibits a broad range of dynamical behaviors across the glass transition and beyond, comparable with those exhibited by a series of distinct silica nanoparticle suspensions of various φ.
Collapse
Affiliation(s)
- J S Behra
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - A Thiriez
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - D Truzzolillo
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - L Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - L Cipelletti
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| |
Collapse
|
3
|
Li Q, Peng X, Chen D, McKenna GB. Softness mapping of the concentration dependence of the dynamics in model soft colloidal systems. J Colloid Interface Sci 2021; 605:398-409. [PMID: 34332413 DOI: 10.1016/j.jcis.2021.07.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
The dynamics of a series of soft colloids comprised of polystyrene cores with poly(N-isopropylacrylamide) (PNIPAM) coronas was investigated by diffusing wave spectroscopy (DWS). The modulus of the coronas was varied by changing the cross-link density and we were able to interpret the results within a hard-soft mapping framework. The soft, swellable particle properties were modeled using an extended Flory-Rehner theory and a Hertzian pair potential. Following volume fraction jumps, softness effects on the concentration dependence of dynamics were determined, with a 'soft colloids make strong glass-forming liquid'-type of behavior observed close to the nominal glass transition volume fraction, φg. Such behavior from the current systems cannot be fully explained by the osmotic deswelling model alone. However, inspired by the soft-hard mapping from Schmiedeberg et al, [Europhys. Lett. 2011, 96(3), 36010] we estimated effective hard-sphere diameters and achieved a successful mapping of the α-relaxation times to a master curve below φg. Above φg, the curves no longer collapse but show strong deviations from a Vogel-Fulcher type of divergence onto soft jamming plateaux. Our results provide evidence that osmotic deswelling itself cannot fully explain the observed dynamics. Softness also plays an important role in the dynamics of soft, concentrated colloids.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Xiaoguang Peng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Dongjie Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Gregory B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
4
|
Gordon MB, Kloxin CJ, Wagner NJ. Structural and rheological aging in model attraction-driven glasses by Rheo-SANS. SOFT MATTER 2021; 17:924-935. [PMID: 33245305 DOI: 10.1039/d0sm01373k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aging in a model colloidal suspension comprised of particles with a thermoreversible attraction is studied using Rheo-SANS techniques in the attractive-driven glass state. Multiple thermal pathways lead to a common rheological and microstructural aging trajectory, as was observed previously for a thermoreversible gel. SANS measurements of the colloidal glass microstructure as a function of temperature and time during various quench protocols are quantitatively characterized in terms of an effective interaction strength that becomes an order parameter defining the microstructural state of the glass. Using previously validated concepts of a fictive temperature, a semi-empirical, quantitative relationship similar to an Avrami relationship is established between the mechanical aging (elastic modulus) and microstructural aging (order parameter) that is independent of thermal history for the thermal profiles studied herein at long times. Furthermore, shear rejuvenation is studied, and while shear may only partially reduce the degree of structure in the glass, aging upon flow cessation is found to follow a common trajectory when viewed in terms of the microstructural order parameter.
Collapse
Affiliation(s)
- Melissa B Gordon
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA 18042, USA
| | | | | |
Collapse
|
5
|
Agarwal M, Kaushal M, Joshi YM. Signatures of Overaging in an Aqueous Dispersion of Carbopol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14849-14863. [PMID: 33241688 DOI: 10.1021/acs.langmuir.0c02887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we study the effect of the deformation field on the physical aging behavior of an aqueous Carbopol dispersion. It is composed of soft swollen particles of gel that get deformed and acquire a polygonal shape, with flat interfaces rendering the dispersion a soft solid-like consistency as filled volume fraction approaches unity. It has been proposed that owing to release of stored elastic energy in the deformed particles, Carbopol dispersion undergoes microstructural evolution that is reminiscent of physical aging in soft glassy materials. We observe that application of moderate magnitude of oscillatory strain to Carbopol dispersion slows down its relaxation dynamics, thereby showing characteristics of overaging. On the other hand, the sufficiently high magnitude of strain makes the relaxation dynamics faster, causing rejuvenation. We also solve the soft glassy rheology model, which, when subjected to the same flow field, corroborates with experimental observations on the Carbopol dispersion. This behavior, therefore, suggests that in a system of jammed soft particles of Carbopol, the particles occupying shallow energy wells upon application of moderate strain field adjust themselves in such a manner that they predominantly occupy the deeper energy wells leading to observe the overaging dynamics.
Collapse
Affiliation(s)
- Mayank Agarwal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Manish Kaushal
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
6
|
Wang JG, Li Q, Peng X, McKenna GB, Zia RN. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics. SOFT MATTER 2020; 16:7370-7389. [PMID: 32696798 DOI: 10.1039/d0sm00999g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite decades of exploration of the colloidal glass transition, mechanistic explanation of glassy relaxation processes has remained murky. State-of-the-art theoretical models of the colloidal glass transition such as random first order transition theory, active barrier hopping theory, and non-equilibrium self-consistent generalized Langevin theory assert that relaxation reported at volume fractions above the ideal mode coupling theory prediction φg,MCT requires some sort of activated process, and that cooperative motion plays a central role. However, discrepancies between predicted and measured values of φg and ambiguity in the role of cooperative dynamics persist. Underlying both issues is the challenge of conducting deep concentration quenches without flow and the difficulty in accessing particle-scale dynamics. These two challenges have led to widespread use of fitting methods to identify divergence, but most a priori assume divergent behavior; and without access to detailed particle dynamics, it is challenging to produce evidence of collective dynamics. We address these limitations by conducting dynamic simulations accompanied by experiments to quench a colloidal liquid into the putative glass by triggering an increase in particle size, and thus volume fraction, at constant particle number density. Quenches are performed from the liquid to final volume fractions 0.56 ≤ φ ≤ 0.63. The glass is allowed to age for long times, and relaxation dynamics are monitored throughout the simulation. Overall, correlated motion acts to release dynamics from the glassy plateau - but only over length scales much smaller than a particle size - allowing self-diffusion to re-emerge; self-diffusion then relaxes the glass into an intransient diffusive state, which persists for φ < 0.60. We observe similar relaxation dynamics up to φ = 0.63 before achieving the intransient state. We find that this long-time self-diffusion is short-ranged: analysis of mean-square displacement reveals a glassy cage size a fraction of a particle size that shrinks with quench depth, i.e. increasing volume fraction. Thus the equivalence between cage size and particle size found in the liquid breaks down in the glass, which we confirm by examining the self-intermediate scattering function over a range of wave numbers. The colloidal glass transition can hence be viewed mechanistically as a shift in the long-time self-diffusion from long-ranged to short-ranged exploration of configurations. This shift takes place without diverging dynamics: there is a smooth transition as particle mobility decreases dramatically with concomitant emergence of a dense local configuration space that permits sampling of many configurations via local particle motion.
Collapse
Affiliation(s)
- J Galen Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Qi Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Xiaoguang Peng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Gregory B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Roseanna N Zia
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Li Q, Peng X, McKenna GB. Physical aging and compressed exponential behaviors in a model soft colloidal system. SOFT MATTER 2019; 15:2336-2347. [PMID: 30758036 DOI: 10.1039/c8sm02042f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diffusing wave spectroscopy (DWS)-based micro-rheology has been used in different optical geometries (backscattering and transmission) as well as different sample thicknesses in order to probe system dynamics at different length scales [D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer. J. Phys., 1990, 51(18), 2101-2127]. Previous study from this lab [Q. Li, X. Peng, G. B. McKenna. Soft Matter, 2017, 13(7), 1396-1404] indicates the DWS-based micro-rheology observes the system non-equilibrium behaviors differently from macro-rheology. The object of the present work was to further explore the non-equilibrium dynamics and to address the range of utility of DWS as a micro-rheological method. A thermo-sensitive core-shell colloidal system was investigated both during aging and subsequent to aging into a metastable equilibrium state using temperature-jump induced volume fraction-jump experiments. We find that in the non-equilibrium state, significant differences in the measured dynamics are observed for the different geometries and length scales. Compressed exponential relaxations for the autocorrelation function g2(t) were observed for large length scales. However, upon converting the g2(t) data to the mean square displacement (MSD), such differences with length scale diminished and the long-time MSD behavior was consistent with diffusive behavior. These observations in the non-equilibrium behaviors for different length scales leads to questioning of some interpretations in the current field of light scattering-based micro-rheology and provides a possibility to interrogate the aging mechanisms in colloidal glasses from a broader perspective than normally considered in measurements of g2(t) using DWS-based micro-rheology.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | |
Collapse
|
8
|
Banik S, McKenna GB. Isochoric structural recovery in molecular glasses and its analog in colloidal glasses. Phys Rev E 2018; 97:062601. [PMID: 30011534 DOI: 10.1103/physreve.97.062601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 11/07/2022]
Abstract
Concentrated colloidal dispersions have been regarded as models for molecular glasses. One of the many ways to compare the behavior in these two different systems is by comparing the structural recovery or the physical aging behavior. However, recent investigations from our group to examine structural recovery in thermosensitive colloidal dispersions have shown contrasting results between the colloidal and the molecular glasses. The differences in the behaviors of the two systems have led us to pose this question: Is structural recovery behavior in colloidal glasses truly distinct from that of molecular glasses or is the conventional experimental condition (isobaric temperature-jumps) in determining the structural recovery in molecular glasses different from the experimental condition in the colloidal experiments (concentration- or volume fraction-jumps); i.e., are colloidal glasses inherently different from molecular glasses or not? To address the question, we resort to model calculations of structural recovery in a molecular glass under constant volume (isochoric) conditions following temperature only- and simultaneous volume- and temperature-jumps, which are closer to the volume fraction-jump conditions used in the thermosensitive-colloidal experiments. The current model predictions are then compared with the signatures of structural recovery under the conventional isobaric state in a molecular glass and with structural recovery behavior in colloidal glasses following volume fraction-jumps. We show that the results obtained from the experiments conducted by our group were contrasting to classical molecular glass behavior because the basis of our comparisons were incorrect (the histories were not analogous). The present calculations (with analogous histories) are qualitatively closer to the colloidal behavior. The signatures of "intrinsic isotherms" and "asymmetry of approach" in the current isochoric model predictions are quite different from those in the classical isobaric conditions while the "memory" signatures remain essentially the same. While there are qualitative similarities between the current isochoric model predictions and results from colloidal glasses, it appears from the calculations that the origins of these are different. The isochoric histories in the molecular glasses have compensating effects of pressure and departure from equilibrium which determines the structure dependence on mobility of the molecules. On the other hand, in the colloids it simply appears that the volume fraction-jump conditions simply do not exhibit such structure mobility dependence. The determining interplay of thermodynamic phase variables in colloidal and molecular systems might be very different or at least their correlations are yet to be ascertained. This topic requires further investigation to bring the similarities and differences between molecular and colloidal glass formers into fuller clarity.
Collapse
Affiliation(s)
- Sourya Banik
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, USA
| | - Gregory B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, USA
| |
Collapse
|
9
|
Rivas-Barbosa R, Lázaro-Lázaro E, Mendoza-Méndez P, Still T, Piazza V, Ramírez-González PE, Medina-Noyola M, Laurati M. Different routes into the glass state for soft thermo-sensitive colloids. SOFT MATTER 2018; 14:5008-5018. [PMID: 29855653 DOI: 10.1039/c8sm00285a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report an experimental and theoretical investigation of glass formation in soft thermo-sensitive colloids following two different routes: a gradual increase of the particle number density at constant temperature and an increase of the radius in a fixed volume at constant particle number density. Confocal microscopy experiments and the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory consistently show that the two routes lead to a dynamically comparable state at sufficiently long aging times. However, experiments reveal the presence of moderate but persistent structural differences. Successive cycles of radius decrease and increase lead instead to a reproducible glass state, indicating a suitable route to obtain rejuvenation without using shear fields.
Collapse
Affiliation(s)
- Rodrigo Rivas-Barbosa
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Li Q, Peng X, McKenna GB. Long-term aging behaviors in a model soft colloidal system. SOFT MATTER 2017; 13:1396-1404. [PMID: 28120996 DOI: 10.1039/c6sm02408d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τα of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Xiaoguang Peng
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Gregory B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
11
|
Abstract
Colloids are suspensions of small solid particles in a liquid and exhibit glassy behavior when the particle concentration is high. In these samples, the particles are roughly analogous to individual molecules in a traditional glass. This model system has been used to study the glass transition since the 1980s. In this Viewpoint I summarize some of the intriguing behaviors of the glass transition in colloids and discuss open questions.
Collapse
Affiliation(s)
- Eric R. Weeks
- Department of Physics, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Peng X, McKenna GB. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions. Phys Rev E 2016; 93:042603. [PMID: 27176348 DOI: 10.1103/physreve.93.042603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Three important kinetic phenomena have been cataloged by Kovacs in the investigation of molecular glasses during structural recovery or physical aging. These are responses to temperature-jump histories referred to as intrinsic isotherms, asymmetry of approach, and memory effect. Here we use a thermosensitive polystyrene-poly (N-isopropylacrylamide)-poly (acrylic acid) core-shell particle-based dispersion as a colloidal model and by working at a constant number concentration of particles we use temperature changes to create volume-fraction changes. This imposes conditions similar to those defined by Kovacs on the colloidal system. We use creep experiments to probe the physical aging and structural recovery behavior of colloidal glasses in the Kovacs-type histories and compare the results with those seen in molecular glasses. We find that there are similarities in aging dynamics between molecular glasses and colloidal glasses, but differences also persist. For the intrinsic isotherms, the times t_{eq} needed for relaxing or evolving into the equilibrium (or stationary) state are relatively insensitive to the volume fraction and the values of t_{eq} are longer than the α-relaxation time τ_{α} at the same volume fraction. On the other hand, both of these times grow at least exponentially with decreasing temperature in molecular glasses. For the asymmetry of approach, similar nonlinear behavior is observed for both colloidal and molecular glasses. However, the equilibration time t_{eq} is the same for both volume-fraction up-jump and down-jump experiments, different from the finding in molecular glasses that it takes longer for the structure to evolve into equilibrium for the temperature up-jump condition than for the temperature down-jump condition. For the two-step volume-fraction jumps, a memory response is observed that is different from observations of structural recovery in two-step temperature histories in molecular glasses. The concentration dependence of the dynamics of the colloidal dispersions is also examined in the equilibrium state and we find that the dynamic fragility index m is sensitive to the degree of softness of the soft colloidal dispersion, indicating that soft colloids make stronger glasses. Finally, we compare the present results with prior findings for similar thermoresponsive systems obtained with diffusing wave spectroscopy and discuss similarities and differences.
Collapse
Affiliation(s)
- Xiaoguang Peng
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Gregory B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
13
|
Appel J, Fölker B, Sprakel J. Mechanics at the glass-to-gel transition of thermoresponsive microgel suspensions. SOFT MATTER 2016; 12:2515-2522. [PMID: 26843322 DOI: 10.1039/c5sm02940f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We study the rheology of systems of thermoresponsive microgels which can transition between a repulsive glass and an attractive gel state. We find marked differences between these two colloidal solids, within the same experimental system, due to the different origins for their dynamic arrest. While the rigidity of the repulsive systems depends solely on particle volume fraction, we find that the change in linear elasticity upon introducing attractive bonds in the system scales linearly with the adhesive bond strength which can be tuned with the temperature in our experiments. And while the glasses yield reversibly and with a rate-dependent energy dissipation, bond-reorganisation in the gels is suppressed so that their rupture is irreversible and accompanied by a high, but rate-independent, dissipation. These results highlight how colloids with responsive interactions can be employed to shed new light onto solid-solid transitions.
Collapse
Affiliation(s)
- Jeroen Appel
- Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB, Wageningen, The Netherlands.
| | - Bart Fölker
- Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB, Wageningen, The Netherlands.
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB, Wageningen, The Netherlands.
| |
Collapse
|