1
|
Sanchez-Burgos I, Muniz MC, Espinosa JR, Panagiotopoulos AZ. A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water. J Chem Phys 2023; 158:2889532. [PMID: 37158636 DOI: 10.1063/5.0144500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Computational studies of liquid water and its phase transition into vapor have traditionally been performed using classical water models. Here, we utilize the Deep Potential methodology-a machine learning approach-to study this ubiquitous phase transition, starting from the phase diagram in the liquid-vapor coexistence regime. The machine learning model is trained on ab initio energies and forces based on the SCAN density functional, which has been previously shown to reproduce solid phases and other properties of water. Here, we compute the surface tension, saturation pressure, and enthalpy of vaporization for a range of temperatures spanning from 300 to 600 K and evaluate the Deep Potential model performance against experimental results and the semiempirical TIP4P/2005 classical model. Moreover, by employing the seeding technique, we evaluate the free energy barrier and nucleation rate at negative pressures for the isotherm of 296.4 K. We find that the nucleation rates obtained from the Deep Potential model deviate from those computed for the TIP4P/2005 water model due to an underestimation in the surface tension from the Deep Potential model. From analysis of the seeding simulations, we also evaluate the Tolman length for the Deep Potential water model, which is (0.091 ± 0.008) nm at 296.4 K. Finally, we identify that water molecules display a preferential orientation in the liquid-vapor interface, in which H atoms tend to point toward the vapor phase to maximize the enthalpic gain of interfacial molecules. We find that this behavior is more pronounced for planar interfaces than for the curved interfaces in bubbles. This work represents the first application of Deep Potential models to the study of liquid-vapor coexistence and water cavitation.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue,Cambridge CB3 0HE, United Kingdom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Maria Carolina Muniz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue,Cambridge CB3 0HE, United Kingdom
- Departamento de Química Fisica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
2
|
Rahman MR, Shen L, Ewen JP, Collard B, Heyes DM, Dini D, Smith ER. Non-equilibrium molecular simulations of thin film rupture. J Chem Phys 2023; 158:2882242. [PMID: 37093990 DOI: 10.1063/5.0149974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
The retraction of thin films, as described by the Taylor-Culick (TC) theory, is subject to widespread debate, particularly for films at the nanoscale. We use non-equilibrium molecular dynamics simulations to explore the validity of the assumptions used in continuum models by tracking the evolution of holes in a film. By deriving a new mathematical form for the surface shape and considering a locally varying surface tension at the front of the retracting film, we reconcile the original theory with our simulation to recover a corrected TC speed valid at the nanoscale.
Collapse
Affiliation(s)
- Muhammad Rizwanur Rahman
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Li Shen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - James P Ewen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Benjamin Collard
- Department of Materials Science, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - D M Heyes
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - E R Smith
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| |
Collapse
|
3
|
Aasen A, Wilhelmsen Ø, Hammer M, Reguera D. Free energy of critical droplets-from the binodal to the spinodal. J Chem Phys 2023; 158:114108. [PMID: 36948791 DOI: 10.1063/5.0142533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Arguably, the main challenge of nucleation theory is to accurately evaluate the work of formation of a critical embryo in the new phase, which governs the nucleation rate. In Classical Nucleation Theory (CNT), this work of formation is estimated using the capillarity approximation, which relies on the value of the planar surface tension. This approximation has been blamed for the large discrepancies between predictions from CNT and experiments. In this work, we present a study of the free energy of formation of critical clusters of the Lennard-Jones fluid truncated and shifted at 2.5σ using Monte Carlo simulations, density gradient theory, and density functional theory. We find that density gradient theory and density functional theory accurately reproduce molecular simulation results for critical droplet sizes and their free energies. The capillarity approximation grossly overestimates the free energy of small droplets. The incorporation of curvature corrections up to the second order with the Helfrich expansion greatly remedies this and performs very well for most of the experimentally accessible regions. However, it is imprecise for the smallest droplets and largest metastabilities since it does not account for a vanishing nucleation barrier at the spinodal. To remedy this, we propose a scaling function that uses all relevant ingredients without adding fitting parameters. The scaling function reproduces accurately the free energy of the formation of critical droplets for the entire metastability range and all temperatures examined and deviates from density gradient theory by less than one kBT.
Collapse
Affiliation(s)
- Ailo Aasen
- SINTEF Energy Research, NO-7465 Trondheim, Norway
| | | | | | - David Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Bal KM, Neyts EC. Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory. J Chem Phys 2022; 157:184113. [DOI: 10.1063/5.0120136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach—based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction—allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.
Collapse
Affiliation(s)
- Kristof M. Bal
- Department of Chemistry and NANOlab Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Erik C. Neyts
- Department of Chemistry and NANOlab Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
5
|
Effect of Wettability on Vacuum-Driven Bubble Nucleation. Processes (Basel) 2022. [DOI: 10.3390/pr10061073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nucleation is the formation of a new phase that has the ability to irreversibly and spontaneously grow into a large-sized nucleus within the body of a metastable parent phase. In this experimental work, the effect of wettability on the incipiation of vacuum-driven bubble nucleation, boiling, and the consequent rate of evaporative cooling are studied. One hydrophilic (untreated), and three hydrophobic (chlorinated polydimethylsiloxane, chlorinated fluoroalkylmethylsiloxane and (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane) glass vials of different wettabilities were filled with degassed deionized water and exposed to a controlled vacuum inside a transparent desiccator. The vacuum was increased by 34 mbar abs. (1 inHg rel.) steps with 15-min waiting period to observe bubble nucleation. The average onset pressures for gas/vapor bubble nucleation in CM, CF, and HT vials were 911 ± 30, 911 ± 34, and 925 ± 17 mbar abs., respectively. Bubble nucleation was not observed in hydrophilic vial even at 65 mbar abs. pressure. During the vacuum boiling at 65 mbar abs., the average temperatures of water in hydrophilic, CM, CF, and HT vials reduced from room temperature (~22.5 °C) to 15.2 ± 0.9, 13.1 ± 0.9, 12.9 ± 0.5, and 11.2 ± 0.3 °C, respectively. The results of this study show that the wettability of the container surface has a strong influence on the onset vacuum for vapor/gas bubble nucleation, rate of vacuum boiling, and evaporative cooling. These findings are expected to be useful to develop wettability-based vacuum boiling technologies.
Collapse
|
6
|
Baidakov VG, Protsenko SP, Bryukhanov VM. Nucleation and relaxation processes in weak solutions: molecular dynamics simulation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2062348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vladimir G. Baidakov
- Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Sergey P. Protsenko
- Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vasiliy M. Bryukhanov
- Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
7
|
Bal KM. Nucleation rates from small scale atomistic simulations and transition state theory. J Chem Phys 2021; 155:144111. [PMID: 34654300 DOI: 10.1063/5.0063398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The evaluation of nucleation rates from molecular dynamics trajectories is hampered by the slow nucleation time scale and impact of finite size effects. Here, we show that accurate nucleation rates can be obtained in a very general fashion relying only on the free energy barrier, transition state theory, and a simple dynamical correction for diffusive recrossing. In this setup, the time scale problem is overcome by using enhanced sampling methods, in casu metadynamics, whereas the impact of finite size effects can be naturally circumvented by reconstructing the free energy surface from an appropriate ensemble. Approximations from classical nucleation theory are avoided. We demonstrate the accuracy of the approach by calculating macroscopic rates of droplet nucleation from argon vapor, spanning 16 orders of magnitude and in excellent agreement with literature results, all from simulations of very small (512 atom) systems.
Collapse
Affiliation(s)
- Kristof M Bal
- Department of Chemistry and NANOlab Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
8
|
Sanchez-Burgos I, Garaizar A, Vega C, Sanz E, Espinosa JR. Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase. SOFT MATTER 2021; 17:489-505. [PMID: 33346291 DOI: 10.1039/d0sm01680b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
9
|
Molecular dynamics simulation of cavitation in a Lennard-Jones liquid at negative pressures. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Perez Sirkin YA, Gadea ED, Scherlis DA, Molinero V. Mechanisms of Nucleation and Stationary States of Electrochemically Generated Nanobubbles. J Am Chem Soc 2019; 141:10801-10811. [DOI: 10.1021/jacs.9b04479] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yamila A. Perez Sirkin
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Esteban D. Gadea
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Damian A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
11
|
Zhou Y, Li B, Gu Y, Chen M. A molecular dynamics simulation study on the cavitation inception of water with dissolved gases. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1559371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yusi Zhou
- Department of Engineering Mechanics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, People’s Republic of China
| | - Buxuan Li
- Department of Engineering Mechanics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, People’s Republic of China
| | - Youwei Gu
- Department of Engineering Mechanics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, People’s Republic of China
| | - Min Chen
- Department of Engineering Mechanics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Baidakov V, Bryukhanov V. Molecular dynamics simulation of bubble nucleation in two-component Lennard-Jones solutions. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Langenbach K, Heilig M, Horsch M, Hasse H. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory. J Chem Phys 2018; 148:124702. [DOI: 10.1063/1.5022231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- K. Langenbach
- Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern D-67663, Germany
| | - M. Heilig
- ROM, Digitalization in Research and Development, BASF SE, Ludwigshafen D-67056, Germany
| | - M. Horsch
- Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern D-67663, Germany
| | - H. Hasse
- Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern D-67663, Germany
| |
Collapse
|
14
|
Sofonea V, Biciuşcă T, Busuioc S, Ambruş VE, Gonnella G, Lamura A. Corner-transport-upwind lattice Boltzmann model for bubble cavitation. Phys Rev E 2018; 97:023309. [PMID: 29548242 DOI: 10.1103/physreve.97.023309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/07/2022]
Abstract
Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2.
Collapse
Affiliation(s)
- V Sofonea
- Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania
| | - T Biciuşcă
- Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania.,Department of Physics, West University of Timişoara, Bd. Vasile Pârvan 4, 300223 Timişoara, Romania
| | - S Busuioc
- Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania.,Department of Physics, West University of Timişoara, Bd. Vasile Pârvan 4, 300223 Timişoara, Romania
| | - Victor E Ambruş
- Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania.,Department of Physics, West University of Timişoara, Bd. Vasile Pârvan 4, 300223 Timişoara, Romania
| | - G Gonnella
- Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, Italy
| | - A Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
15
|
Vrabec J, Bernreuther M, Bungartz HJ, Chen WL, Cordes W, Fingerhut R, Glass CW, Gmehling J, Hamburger R, Heilig M, Heinen M, Horsch MT, Hsieh CM, Hülsmann M, Jäger P, Klein P, Knauer S, Köddermann T, Köster A, Langenbach K, Lin ST, Neumann P, Rarey J, Reith D, Rutkai G, Schappals M, Schenk M, Schedemann A, Schönherr M, Seckler S, Stephan S, Stöbener K, Tchipev N, Wafai A, Werth S, Hasse H. SkaSim - Skalierbare HPC-Software für molekulare Simulationen in der chemischen Industrie. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201700113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jadran Vrabec
- Universität Paderborn; Lehrstuhl für Thermodynamik und Energietechnik; Warburger Straße 100 33098 Paderborn Deutschland
| | - Martin Bernreuther
- HLRS Höchstleistungsrechenzentrum Stuttgart; Nobelstraße 19 70569 Stuttgart Deutschland
| | - Hans-Joachim Bungartz
- Technische Universität München; Institut für Informatik; Boltzmannstraße 3 85748 Garching Deutschland
| | - Wei-Lin Chen
- National Taiwan University; Department of Chemical Engineering; No. 1, Section 4, Roosevelt Rd 10617 Taipei City Taiwan
| | - Wilfried Cordes
- DDBST GmbH; Marie-Curie-Straße 10 26129 Oldenburg Deutschland
| | - Robin Fingerhut
- Universität Paderborn; Lehrstuhl für Thermodynamik und Energietechnik; Warburger Straße 100 33098 Paderborn Deutschland
| | - Colin W. Glass
- HLRS Höchstleistungsrechenzentrum Stuttgart; Nobelstraße 19 70569 Stuttgart Deutschland
| | - Jürgen Gmehling
- DDBST GmbH; Marie-Curie-Straße 10 26129 Oldenburg Deutschland
| | - René Hamburger
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM; Fraunhofer-Platz 1 67663 Kaiserslautern Deutschland
| | - Manfred Heilig
- BASF SE; Carl-Bosch-Straße 38 67056 Ludwigshafen/Rhein Deutschland
| | - Matthias Heinen
- Universität Paderborn; Lehrstuhl für Thermodynamik und Energietechnik; Warburger Straße 100 33098 Paderborn Deutschland
| | - Martin T. Horsch
- Technische Universität Kaiserslautern; Lehrstuhl für Thermodynamik; Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Deutschland
- American University of Iraq, Sulaimani; Engineering Department; Sulaimani - Kirkuk Road 46001 Raparin, Sulaimani Irak
| | - Chieh-Ming Hsieh
- National Central University; Department of Chemical & Material Engineering; No. 300 Zhongda Road 320 Taoyuan City Taiwan
| | - Marco Hülsmann
- Hochschule Bonn-Rhein-Sieg; Fachbereich Elektrotechnik, Maschinenbau und Technikjournalismus; Grantham-Allee 20 53757 Sankt Augustin Deutschland
- Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI; Schloss Birlinghoven 53757 Sankt Augustin Deutschland
| | - Philip Jäger
- Eurotechnica GmbH; An den Stücken 55 22941 Bargteheide Deutschland
| | - Peter Klein
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM; Fraunhofer-Platz 1 67663 Kaiserslautern Deutschland
| | - Sandra Knauer
- Eurotechnica GmbH; An den Stücken 55 22941 Bargteheide Deutschland
| | - Thorsten Köddermann
- Hochschule Bonn-Rhein-Sieg; Fachbereich Elektrotechnik, Maschinenbau und Technikjournalismus; Grantham-Allee 20 53757 Sankt Augustin Deutschland
- Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI; Schloss Birlinghoven 53757 Sankt Augustin Deutschland
| | - Andreas Köster
- Universität Paderborn; Lehrstuhl für Thermodynamik und Energietechnik; Warburger Straße 100 33098 Paderborn Deutschland
| | - Kai Langenbach
- Technische Universität Kaiserslautern; Lehrstuhl für Thermodynamik; Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Deutschland
| | - Shiang-Tai Lin
- National Taiwan University; Department of Chemical Engineering; No. 1, Section 4, Roosevelt Rd 10617 Taipei City Taiwan
| | - Philipp Neumann
- Deutsches Klimarechenzentrum DKRZ; Bundesstraße 45a 20146 Hamburg Deutschland
| | - Jürgen Rarey
- DDBST GmbH; Marie-Curie-Straße 10 26129 Oldenburg Deutschland
| | - Dirk Reith
- Hochschule Bonn-Rhein-Sieg; Fachbereich Elektrotechnik, Maschinenbau und Technikjournalismus; Grantham-Allee 20 53757 Sankt Augustin Deutschland
- Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI; Schloss Birlinghoven 53757 Sankt Augustin Deutschland
| | - Gábor Rutkai
- Universität Paderborn; Lehrstuhl für Thermodynamik und Energietechnik; Warburger Straße 100 33098 Paderborn Deutschland
| | - Michael Schappals
- Technische Universität Kaiserslautern; Lehrstuhl für Thermodynamik; Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Deutschland
| | - Martin Schenk
- Hochschule Bonn-Rhein-Sieg; Fachbereich Elektrotechnik, Maschinenbau und Technikjournalismus; Grantham-Allee 20 53757 Sankt Augustin Deutschland
| | | | | | - Steffen Seckler
- Technische Universität München; Institut für Informatik; Boltzmannstraße 3 85748 Garching Deutschland
| | - Simon Stephan
- Technische Universität Kaiserslautern; Lehrstuhl für Thermodynamik; Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Deutschland
| | - Katrin Stöbener
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM; Fraunhofer-Platz 1 67663 Kaiserslautern Deutschland
| | - Nikola Tchipev
- Technische Universität München; Institut für Informatik; Boltzmannstraße 3 85748 Garching Deutschland
| | - Amer Wafai
- HLRS Höchstleistungsrechenzentrum Stuttgart; Nobelstraße 19 70569 Stuttgart Deutschland
| | - Stephan Werth
- Technische Universität Kaiserslautern; Lehrstuhl für Thermodynamik; Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Deutschland
| | - Hans Hasse
- Technische Universität Kaiserslautern; Lehrstuhl für Thermodynamik; Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Deutschland
| |
Collapse
|
16
|
Shneidman VA. Communication: On the diffusion tensor in macroscopic theory of cavitation. J Chem Phys 2017; 147:061101. [PMID: 28810751 DOI: 10.1063/1.4997934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The classical description of nucleation of cavities in a stretched fluid relies on a one-dimensional Fokker-Planck equation (FPE) in the space of their sizes r, with the diffusion coefficient D(r) constructed for all r from macroscopic hydrodynamics and thermodynamics, as shown by Zeldovich. When additional variables (e.g., vapor pressure) are required to describe the state of a bubble, a similar approach to construct a diffusion tensor D^ generally works only in the direct vicinity of the thermodynamic saddle point corresponding to the critical nucleus. It is shown, nevertheless, that "proper" kinetic variables to describe a cavity can be selected, allowing to introduce D^ in the entire domain of parameters. In this way, for the first time, complete FPE's are constructed for viscous volatile and inertial fluids. In the former case, the FPE with symmetric D^ is solved numerically. Alternatively, in the case of an inertial fluid, an equivalent Langevin equation is considered; results are compared with analytics. The suggested approach is quite general and can be applied beyond the cavitation problem.
Collapse
Affiliation(s)
- Vitaly A Shneidman
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
17
|
Tanaka KK, Diemand J, Tanaka H, Angélil R. Analyzing multistep homogeneous nucleation in vapor-to-solid transitions using molecular dynamics simulations. Phys Rev E 2017; 96:022804. [PMID: 28950501 DOI: 10.1103/physreve.96.022804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we present multistep homogeneous nucleations in vapor-to-solid transitions as revealed by molecular dynamics simulations on Lennard-Jones molecules, where liquidlike clusters are created and crystallized. During a long, direct NVE (constant volume, energy, and number of molecules) involving the integration of (1.9-15)×10^{6} molecules in up to 200 million steps (=4.3 μs), crystallization in many large, supercooled nanoclusters is observed once the liquid clusters grow to a certain size (∼800 molecules for the case of T≃0.5ɛ/k). In the simulations, we discovered an interesting process associated with crystallization: the solid clusters lost 2-5 % of their mass during crystallization at low temperatures below their melting temperatures. Although the crystallized clusters were heated by latent heat, they were stabilized by cooling due to evaporation. The clusters crystallized quickly and completely except at surface layers. However, they did not have stable crystal structures, rather they had metastable structures such as icosahedral, decahedral, face-centered-cubic-rich (fcc-rich), and hexagonal-close-packed-rich (hcp-rich). Several kinds of cluster structures coexisted in the same size range of ∼1000-5000 molecules. Our results imply that multistep nucleation is a common first stage of condensation from vapor to solid.
Collapse
Affiliation(s)
- Kyoko K Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Jürg Diemand
- Institute for Computational Science, University of Zürich, 8057 Zürich, Switzerland
| | - Hidekazu Tanaka
- Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Raymond Angélil
- Institute for Computational Science, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
18
|
Abstract
Kinetics of nucleation and growth of empty bubbles in a nonvolatile incompressible fluid under negative pressure is considered within the generalized Zeldovich framework. The transient matched asymptotic solution obtained earlier for predominantly viscous nucleation is used to evaluate the distribution of growing cavities over sizes. Inertial effects described by the Rayleigh-Plesset equation are further included. The distributions are used to estimate the volume occupied by cavities, which leads to increase of pressure and eventual self-quenching of nucleation. Numerical solutions are obtained and compared with analytics. Due to rapid expansion of cavities the conventional separation of the nucleation and the growth time scales can be less distinct, which increases the role of transient effects. In particular, in the case of dominant viscosity a typical power-law tail of the quasistationary distribution is replaced by a time-dependent exponential tail. For fluids of the glycerin type such distributions can extend into the micrometer region, while in low-viscosity liquids (water, mercury) exponential distributions are short lived and are restricted to nanometer scales due to inertial effects.
Collapse
Affiliation(s)
- Vitaly A Shneidman
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
19
|
Meloni S, Giacomello A, Casciola CM. Focus Article: Theoretical aspects of vapor/gas nucleation at structured surfaces. J Chem Phys 2016; 145:211802. [DOI: 10.1063/1.4964395] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Simone Meloni
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy
| | - Alberto Giacomello
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
20
|
Ching EJ, Avedisian CT, Cavicchi RC, Chung DH, Rah J, Carrier MJ. Rapid evaporation at the superheat limit of methanol, ethanol, butanol and n-heptane on platinum films supported by low-stress SiN membranes. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 2016; 101:707-718. [PMID: 28065997 PMCID: PMC5207052 DOI: 10.1016/j.ijheatmasstransfer.2016.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The bubble nucleation temperatures of several organic liquids (methanol, ethanol, butanol, n-heptane) on stress-minimized platinum (Pt) films supported by SiN membranes is examined by pulse-heating the membranes for times ranging from 1 µs to 10 µs. The results show that the nucleation temperatures increase as the heating rates of the Pt films increase. Measured nucleation temperatures approach predicted superheat limits for the smallest pulse times which correspond to heating rates over 108 K/s, while nucleation temperatures are significantly lower for the longest pulse times. The microheater membranes were found to be robust for millions of pulse cycles, which suggests their potential in applications for moving fluids on the microscale and for more fundamental studies of phase transitions of metastable liquids.
Collapse
Affiliation(s)
- Eric J. Ching
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - C. Thomas Avedisian
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- author of correspondence;
| | - Richard C. Cavicchi
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Do Hyun Chung
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jeff Rah
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Michael J. Carrier
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
21
|
Schmelzer JWP, Baidakov VG. Comment on "Simple improvements to classical bubble nucleation models". Phys Rev E 2016; 94:026801. [PMID: 27627427 DOI: 10.1103/physreve.94.026801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 11/07/2022]
Abstract
A critical analysis of several statements concerning experimental studies, molecular dynamics simulations, and the theoretical interpretation of bubble nucleation processes is performed. In particular, it is shown that the Tolman equation does not supply us, in general, with a satisfactory theoretically founded description of the curvature dependence of the surface tension and the dependence of the steady-state nucleation rate of bubbles and droplets on supersaturation in the framework of classical nucleation theory.
Collapse
Affiliation(s)
- Jürn W P Schmelzer
- Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany
| | - Vladimir G Baidakov
- Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Amundsen Street 107a, 620016 Yekaterinburg, Russia
| |
Collapse
|
22
|
Tanaka KK, Tanaka H, Angélil R, Diemand J. Reply to "Comment on 'Simple improvements to classical bubble nucleation models' ". Phys Rev E 2016; 94:026802. [PMID: 27627428 DOI: 10.1103/physreve.94.026802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 06/06/2023]
Abstract
We reply to the Comment by Schmelzer and Baidakov [Phys. Rev. E 94, 026801 (2016)].10.1103/PhysRevE.94.026801 They suggest that a more modern approach than the classic description by Tolman is necessary to model the surface tension of curved interfaces. Therefore we now consider the higher-order Helfrich correction, rather than the simpler first-order Tolman correction. Using a recent parametrization of the Helfrich correction provided by Wilhelmsen et al. [J. Chem. Phys. 142, 064706 (2015)]JCPSA60021-960610.1063/1.4907588, we test this description against measurements from our simulations, and find an agreement stronger than what the pure Tolman description offers. Our analyses suggest a necessary correction of order higher than the second for small bubbles with radius ≲1 nm. In addition, we respond to other minor criticism about our results.
Collapse
Affiliation(s)
- Kyoko K Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | | | - Raymond Angélil
- Institute for Computational Science, University of Zürich, 8057 Zürich, Switzerland
| | - Jürg Diemand
- Institute for Computational Science, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
23
|
Guo C, Wang J, Wang Z, Li J, Guo Y, Huang Y. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation. SOFT MATTER 2016; 12:4666-4673. [PMID: 27117814 DOI: 10.1039/c6sm00774k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory.
Collapse
Affiliation(s)
- Can Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Yaolin Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Yunhao Huang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
24
|
Zhukhovitskii DI. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor. J Chem Phys 2016; 144:184701. [DOI: 10.1063/1.4948436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. I. Zhukhovitskii
- Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow, Russia
| |
Collapse
|
25
|
Nie C, Geng J, Marlow WH. The free energy of the metastable supersaturated vapor via restricted ensemble simulations. III. An extension to the Corti and Debenedetti subcell constraint algorithm. J Chem Phys 2016; 144:144503. [DOI: 10.1063/1.4945723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
|
27
|
Baidakov VG. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory. J Chem Phys 2016; 144:074502. [PMID: 26896990 DOI: 10.1063/1.4941689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The process of bubble nucleation in a Lennard-Jones (LJ) liquid is studied by molecular dynamics (MD) simulation. The bubble nucleation rate J is determined by the mean life-time method at temperatures above that of the triple point in the region of negative pressures. The results of simulation are compared with classical nucleation theory (CNT) and modified classical nucleation theory (MCNT), in which the work of formation of a critical bubble is determined in the framework of the van der Waals-Cahn-Hilliard gradient theory (GT). It has been found that the values of J obtained in MD simulation systematically exceed the data of CNT, and this excess in the nucleation rate reaches 8-10 orders of magnitude close to the triple point temperature. The results of MCNT are in satisfactory agreement with the data of MD simulation. To describe the properties of vapor-phase nuclei in the framework of GT, an equation of state has been built up which describes stable, metastable and labile regions of LJ fluids. The surface tension of critical bubbles γ has been found from CNT and data of MD simulation as a function of the radius of curvature of the surface of tension R*. The dependence γ(R*) has also been calculated from GT. The Tolman length has been determined, which is negative and in modulus equal to ≈(0.1 - 0.2) σ. The paper discusses the applicability of the Tolman formula to the description of the properties of critical nuclei in nucleation.
Collapse
Affiliation(s)
- Vladimir G Baidakov
- Institute of Thermophysics, Ural Branch of the Russian Academy of Sciences, Amundsen Street 107a, 620016 Ekaterinburg, Russia
| |
Collapse
|
28
|
Denzel P, Diemand J, Angélil R. Molecular dynamics simulations of bubble nucleation in dark matter detectors. Phys Rev E 2016; 93:013301. [PMID: 26871185 DOI: 10.1103/physreve.93.013301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/07/2022]
Abstract
Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.
Collapse
Affiliation(s)
- Philipp Denzel
- Institute for Computational Science, University of Zurich, 8057 Zurich, Switzerland
| | - Jürg Diemand
- Institute for Computational Science, University of Zurich, 8057 Zurich, Switzerland
| | - Raymond Angélil
- Institute for Computational Science, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Lam J, Amans D, Dujardin C, Ledoux G, Allouche AR. Atomistic Mechanisms for the Nucleation of Aluminum Oxide Nanoparticles. J Phys Chem A 2015. [DOI: 10.1021/acs.jpca.5b05829] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Lam
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| | - David Amans
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| | - Christophe Dujardin
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| | - Gilles Ledoux
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| | - Abdul-Rahman Allouche
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| |
Collapse
|
30
|
Tanaka KK, Tanaka H, Angélil R, Diemand J. Simple improvements to classical bubble nucleation models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022401. [PMID: 26382410 DOI: 10.1103/physreve.92.022401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 06/05/2023]
Abstract
We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.
Collapse
Affiliation(s)
- Kyoko K Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Hidekazu Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Raymond Angélil
- Institute for Computational Science, University of Zürich, 8057 Zürich, Switzerland
| | - Jürg Diemand
- Institute for Computational Science, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
31
|
Angélil R, Diemand J, Tanaka KK, Tanaka H. Bubble evolution and properties in homogeneous nucleation simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:063301. [PMID: 25615216 DOI: 10.1103/physreve.90.063301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 06/04/2023]
Abstract
We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.
Collapse
Affiliation(s)
- Raymond Angélil
- Institute for Computational Science, University of Zurich, 8057 Zurich, Switzerland
| | - Jürg Diemand
- Institute for Computational Science, University of Zurich, 8057 Zurich, Switzerland
| | - Kyoko K Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Hidekazu Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| |
Collapse
|