1
|
Yong X, Du K. Effects of Shape on Interaction Dynamics of Tetrahedral Nanoplastics and the Cell Membrane. J Phys Chem B 2023; 127:1652-1663. [PMID: 36763902 DOI: 10.1021/acs.jpcb.2c07460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cellular uptake of nanoplastics is instrumental in their environmental accumulation and transfer to humans through the food chain. Despite extensive studies using spherical plastic nanoparticles, the influence of the morphological characteristics of environmentally released nanoplastics is understudied. Using dissipative particle dynamics simulations, we modeled the interactions between a cell membrane and hydrophobic nanotetrahedra, which feature high shape anisotropy and large surface curvature seen for environmental nanoplastics. We observe robust uptake of nanotetrahedra with sharp vertices and edges by the lipid membrane. Two local energy minimum configurations of nanotetrahedra embedded in the membrane bilayer were identified for particles of large sizes. Further analysis of particle dynamics within the membrane shows that the two interaction states exhibit distinct translational and rotational dynamics in the directions normal and parallel to the plane of the membrane. The membrane confinement significantly arrests the out-of-plane motion, resulting in caged translation and subdiffusive rotation. While the in-plane diffusion remains Brownian, we find that the translational and rotational modes decouple from each other as the particle size increases. The rotational diffusion decreases by a greater extent compared to the translational diffusion, deviating from the continuum theory predictions. These results provide fundamental insights into the shape effect on the nanoparticle dynamics in crowded lipid membranes.
Collapse
Affiliation(s)
- Xin Yong
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, United States
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
2
|
Basham CM, Spittle S, Sangoro J, El-Beyrouthy J, Freeman E, Sarles SA. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54558-54571. [PMID: 36459500 DOI: 10.1021/acsami.2c16677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.
Collapse
Affiliation(s)
- Colin M Basham
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Stephen A Sarles
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
3
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Sun S, Huang Y, Zhou C, Chen S, Yu M, Liu J, Zheng J. Effect of Hydrophobicity on Nano-Bio Interactions of Zwitterionic Luminescent Gold Nanoparticles at the Cellular Level. Bioconjug Chem 2018; 29:1841-1846. [DOI: 10.1021/acs.bioconjchem.8b00202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shasha Sun
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Yingyu Huang
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chen Zhou
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sishan Chen
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mengxiao Yu
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jinbin Liu
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jie Zheng
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Tian F, Yue T, Dong W, Yi X, Zhang X. Size-dependent formation of membrane nanotubes: continuum modeling and molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:3474-3483. [DOI: 10.1039/c7cp06212e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With continuum theory and molecular dynamics simulations we demonstrated that the lipid membrane upon extraction exhibits size- and tension-dependent mechanical behaviors, and different structural lipid rearrangements in different leaflets.
Collapse
Affiliation(s)
- Falin Tian
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Laboratoire de Chimie
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing
- Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Wei Dong
- Laboratoire de Chimie
- Ecole Normale Superieure de Lyon
- 69364 Lyon Cedex 07
- France
| | - Xin Yi
- Department of Mechanics and Engineering Science
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
6
|
Liu X, Tian F, Yue T, Zhang X, Zhong C. Pulling force and surface tension drive membrane fusion. J Chem Phys 2017; 147:194703. [PMID: 29166098 DOI: 10.1063/1.4997393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite catalyzed by fusion proteins of quite different molecular architectures, intracellular, viral, and cell-to-cell fusions are found to have the essential common features and the nearly same nature of transition states. The similarity inspires us to find a more general catalysis mechanism for membrane fusion that minimally depends on the specific structures of fusion proteins. In this work, we built a minimal model for membrane fusion, and by using dissipative particle dynamics simulations, we propose a mechanism that the pulling force generated by fusion proteins initiates the fusion process and the membrane tension regulates the subsequent fusion stages. The model shows different features compared to previous computer simulation studies: the pulling force catalyzes membrane fusion through lipid head overcrowding in the contacting region, leading to an increase in the head-head repulsion and/or the unfavorable head-tail contacts from opposing membranes, both of which destabilize the contacting leaflets and thus promote membrane fusion or vesicle rupture. Our simulations produce a variety of shapes and intermediates, closely resembling cases seen experimentally. Our work strongly supports the view that the tight pulling mechanism is a conserved feature of fusion protein-mediated fusion and that the membrane tension plays an essential role in fusion.
Collapse
Affiliation(s)
- Xuejuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Falin Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
7
|
Dasgupta S, Auth T, Gompper G. Nano- and microparticles at fluid and biological interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:373003. [PMID: 28608781 PMCID: PMC7104866 DOI: 10.1088/1361-648x/aa7933] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/12/2017] [Accepted: 06/13/2017] [Indexed: 05/05/2023]
Abstract
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Collapse
Affiliation(s)
- S Dasgupta
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institut Curie, CNRS, UMR 168, 75005 Paris, France
- Present address: Department of Physics, University of Toronto, Toronto, Ontario M5S1A7, Canada
| | - T Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - G Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
8
|
Liu X, Tian F, Yue T, Zhang X, Zhong C. Exploring the shape deformation of biomembrane tubes with theoretical analysis and computer simulation. SOFT MATTER 2016; 12:9077-9085. [PMID: 27747359 DOI: 10.1039/c6sm01903j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The shape deformation of membrane nanotubes is studied by a combination of theoretical analysis and molecular simulation. First we perform free energy analysis to demonstrate the effects of various factors on two ideal states for the pearling transition, and then we carry out dissipative particle dynamics simulations, through which various types of membrane tube deformation are found, including membrane pearling, buckling, and bulging. Different models for inducing tube deformation, including the osmotic pressure, area difference and spontaneous curvature models, are considered to investigate tubular instabilities. Combined with free energy analysis, our simulations show that the origin of the deformation of membrane tubes in different models can be classified into two categories: effective spontaneous curvature and membrane tension. We further demonstrate that for different models, a positive membrane tension is required for the pearling transition. Finally we show that different models can be coupled to effectively deform the membrane tube.
Collapse
Affiliation(s)
- Xuejuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Falin Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China. and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing 100029, P. R. China
| |
Collapse
|
9
|
Hughes ZE, Walsh TR. Elucidating the mechanisms of nanodiamond-promoted structural disruption of crystallised lipid. SOFT MATTER 2016; 12:8338-8347. [PMID: 27722729 DOI: 10.1039/c6sm01155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The removal or structural disruption of crystallised lipid is a pivotal but energy-intensive step in a wide range of industrial and biological processes. Strategies to disrupt the structure of crystallised lipid in aqueous solution at lower temperatures are much needed, where nanoparticle-based strategies show enormous promise. Using the aqueous tristearin bilayer as a model for crystallised lipid, we demonstrate that the synergistic use of surfactant and detonation nanodiamonds can depress the onset temperature at which disruption of the crystallised lipid structure occurs. Our simulations reveal the molecular-scale mechanisms by which this disruption takes place, indicating that the nanodiamonds serve a dual purpose. First, the nanodiamonds are predicted to facilitate delivery of surfactant to the lipid/water interface, and second, nanodiamond adsorption acts to roughen the lipid/water interface, enhancing ingress of surfactant into the bilayer. We find the balance of the hydrophobic surface area of the nanodiamond and the nanodiamond surface charge density to be a key determinant of the effectiveness of using nanodiamonds to facilitate lipid disruption. For the nanodiamond size considered here, we identify a moderate surface charge density, that ensures the nanodiamonds are neither too hydrophobic nor too hydrophilic, to be optimal.
Collapse
Affiliation(s)
- Zak E Hughes
- Institute for Frontier Materials, Deakin University, Geelong, Australia.
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Australia.
| |
Collapse
|
10
|
Yue T, Xu Y, Li S, Zhang X, Huang F. Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers. Phys Chem Chem Phys 2016; 18:18923-33. [DOI: 10.1039/c6cp01957a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our MD simulations demonstrate that the aggregation of carbon nanospheres in PSM is in fact size-dependent and mediated by lipid extractions.
Collapse
Affiliation(s)
- Tongtao Yue
- State Key Laboratory of Heavy Oil Processing
- Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- China
| | - Yan Xu
- State Key Laboratory of Heavy Oil Processing
- Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing
- Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing
- Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- China
| |
Collapse
|
11
|
Varanasi SR, Guskova OA, John A, Sommer JU. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration. J Chem Phys 2015; 142:224308. [DOI: 10.1063/1.4922322] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|