1
|
Demyanov GS, Levashov PR. One-component plasma of a million particles via angular-averaged Ewald potential: A Monte Carlo study. Phys Rev E 2022; 106:015204. [PMID: 35974543 DOI: 10.1103/physreve.106.015204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In this work we derive a correct expression for the one-component plasma (OCP) energy via the angular-averaged Ewald potential (AAEP). Unlike Yakub and Ronchi [J. Low Temp. Phys. 139, 633 (2005)0022-229110.1007/s10909-005-5451-5], who had tried to obtain the same energy expression from a two-component plasma model, we used the original Ewald potential for an OCP. A constant in the AAEP was determined using the cluster expansion in the limit of weak coupling. The potential has a simple form suitable for effective numerical simulations. To demonstrate the advantages of the AAEP, we performed a number of Monte Carlo simulations for an OCP with up to a million particles in a wide range of the coupling parameter. Our computations turned out at least two orders of magnitude more effective than those with a traditional Ewald potential. A unified approach is offered for the determination of the thermodynamic limit in the whole investigated range. Our results are in good agreement with both theoretical data for a weakly coupled OCP and previous numerical simulations. We hope that the AAEP will be useful in path integral Monte Carlo simulations of the uniform electron gas.
Collapse
Affiliation(s)
- G S Demyanov
- Joint Institute for High Temperatures, Izhorskaya 13 Bldg 2, Moscow 125412, Russia and Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141701, Russia
| | - P R Levashov
- Joint Institute for High Temperatures, Izhorskaya 13 Bldg 2, Moscow 125412, Russia and Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
2
|
Khrapak SA, Khrapak A. Freezing density scaling of fluid transport properties: Application to liquified noble gases. J Chem Phys 2022; 157:014501. [DOI: 10.1063/5.0096947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A freezing density scaling of transport properties of the Lennard-Jones fluid is rationalized in terms of the Rosenfeld's excess entropy scaling and isomorph theory of Roskilde-simple systems. Then, it is demonstrated that the freezing density scaling operates reasonably well for viscosity and thermal conductivity coefficients of liquid argon, krypton, and xenon. Quasi-universality of the reduced transport coefficients at their minima and at freezing conditions is discussed. The magnitude of the thermal conductivity coefficient at the freezing point is shown to agree remarkably well with the prediction of the vibrational model of thermal transport in dense fluids.
Collapse
Affiliation(s)
- Sergey A. Khrapak
- Complex Plasma, FSBSI Joint Institute for High Temperatures of the Russian Academy of Sciences, Russia
| | - Alexey Khrapak
- Theoretical Department, Joint Institute for High Temperatures RAS, Russia
| |
Collapse
|
3
|
Lucco Castello F, Tolias P. Bridge functions of classical one-component plasmas. Phys Rev E 2022; 105:015208. [PMID: 35193199 DOI: 10.1103/physreve.105.015208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In a recent paper, Lucco Castello et al. [arXiv:2107.03537] performed systematic extractions of classical one-component plasma bridge functions from molecular dynamics simulations and provided an accurate parametrization that was incorporated in their isomorph-based empirically modified hypernetted chain approach for Yukawa one-component plasmas. Here the extraction technique and parametrization strategy are described in detail, while the deficiencies of earlier efforts are discussed. The structural and thermodynamic predictions of the updated version of the integral equation theory approach are compared with extensive available simulation results revealing a truly unprecedented level of accuracy in the entire dense liquid region of the Yukawa phase diagram.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
4
|
Tolias P, Lucco Castello F, Dornheim T. Integral equation theory based dielectric scheme for strongly coupled electron liquids. J Chem Phys 2021; 155:134115. [PMID: 34625000 DOI: 10.1063/5.0065988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In a recent paper, Lucco Castello et al. (arXiv:2107.03537) provided an accurate parameterization of classical one-component plasma bridge functions that was embedded in a novel dielectric scheme for strongly coupled electron liquids. Here, this approach is rigorously formulated, its set of equations is formally derived, and its numerical algorithm is scrutinized. A systematic comparison with available and new path integral Monte Carlo simulations reveals a rather unprecedented agreement especially in terms of the interaction energy and the long wavelength limit of the static local field correction.
Collapse
Affiliation(s)
- P Tolias
- Space and Plasma Physics-Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - F Lucco Castello
- Space and Plasma Physics-Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - T Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| |
Collapse
|
5
|
Castello FL, Tolias P. Structure and thermodynamics of two-dimensional Yukawa liquids. Phys Rev E 2021; 103:063205. [PMID: 34271703 DOI: 10.1103/physreve.103.063205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic and structural properties of two-dimensional dense Yukawa liquids are studied with molecular dynamics simulations. The "exact" thermodynamic properties are simultaneously employed in an advanced scheme for the determination of an equation of state that shows an unprecedented level of accuracy for the internal energy, pressure, and isothermal compressibility. The "exact" structural properties are utilized to formulate a novel empirical correction to the hypernetted-chain approach that leads to a very high accuracy level in terms of static correlations and thermodynamics.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
6
|
Lucco Castello F, Tolias P. Theoretical Estimate of the Glass Transition Line of Yukawa One-Component Plasmas. Molecules 2021; 26:molecules26030669. [PMID: 33525346 PMCID: PMC7865523 DOI: 10.3390/molecules26030669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/04/2022] Open
Abstract
The mode coupling theory of supercooled liquids is combined with advanced closures to the integral equation theory of liquids in order to estimate the glass transition line of Yukawa one-component plasmas from the unscreened Coulomb limit up to the strong screening regime. The present predictions constitute a major improvement over the current literature predictions. The calculations confirm the validity of an existing analytical parameterization of the glass transition line. It is verified that the glass transition line is an approximate isomorphic curve and the value of the corresponding reduced excess entropy is estimated. Capitalizing on the isomorphic nature of the glass transition line, two structural vitrification indicators are identified that allow a rough estimate of the glass transition point only through simple curve metrics of the static properties of supercooled liquids. The vitrification indicators are demonstrated to be quasi-universal by an investigation of hard sphere and inverse power law supercooled liquids. The straightforward extension of the present results to bi-Yukawa systems is also discussed.
Collapse
|
7
|
Lucco Castello F, Tolias P, Dyre JC. Testing the isomorph invariance of the bridge functions of Yukawa one-component plasmas. J Chem Phys 2021; 154:034501. [PMID: 33499616 DOI: 10.1063/5.0036226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been recently conjectured that bridge functions remain nearly invariant along phase diagram lines of constant excess entropy for the broad class of R-simple liquids. To test this hypothesis, the bridge functions of Yukawa systems are computed outside the correlation void with the Ornstein-Zernike inversion method employing structural input from ultra-accurate molecular dynamics simulations and inside the correlation void with the cavity distribution method employing structural input from ultra-long specially designed molecular dynamics simulations featuring a tagged particle pair. Yukawa bridge functions are revealed to be isomorph invariant to a very high degree. The observed invariance is not exact, however, since isomorphic deviations exceed the overall uncertainties.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - J C Dyre
- Glass and Time, IMFUFA, Roskilde University, Roskilde DK-4000, Denmark
| |
Collapse
|
8
|
Khrapak SA, Khrapak AG, Kryuchkov NP, Yurchenko SO. Onset of transverse (shear) waves in strongly-coupled Yukawa fluids. J Chem Phys 2019; 150:104503. [PMID: 30876343 DOI: 10.1063/1.5088141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A simple practical approach to describe transverse (shear) waves in strongly-coupled Yukawa fluids is presented. Theoretical dispersion curves, based on hydrodynamic consideration, are shown to compare favorably with existing numerical results for plasma-related systems in the long-wavelength regime. The existence of a minimum wave number below which shear waves cannot propagate and its magnitude are properly accounted in the approach. The relevance of the approach beyond plasma-related Yukawa fluids is demonstrated by using experimental data on transverse excitations in liquid metals Fe, Cu, and Zn, obtained from inelastic x-ray scattering. Some potentially important relations, scalings, and quasi-universalities are discussed. The results should be interesting for a broad community in chemical physics, materials physics, physics of fluids and glassy state, complex (dusty) plasmas, and soft matter.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Weßling, Germany
| | - Alexey G Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | | | | |
Collapse
|
9
|
Kryuchkov NP, Khrapak SA, Yurchenko SO. Thermodynamics of two-dimensional Yukawa systems across coupling regimes. J Chem Phys 2018; 146:134702. [PMID: 28390340 DOI: 10.1063/1.4979325] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Sergey A Khrapak
- CNRS, PIIM, Aix Marseille University, Marseille, France; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany; and Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| |
Collapse
|
10
|
Momot AI, Zagorodny AG, Orel IS. Interaction force between two finite-size charged particles in weakly ionized plasma. Phys Rev E 2017; 95:013212. [PMID: 28208425 DOI: 10.1103/physreve.95.013212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 11/07/2022]
Abstract
The results of numerical studies of the interaction forces between two finite-size charged spherical conductive particles embedded into weakly ionized strongly collisional isothermal plasma-like medium are presented. The studies are performed for the case of particles with fixed electric charge under the assumption that particles do not absorb electrons and ions from the surrounding plasma (colloidal particles) as well as for particles charged by plasma currents (grains). In the first case the Poisson-Boltzmann model was used and in the second the dynamics of grain charging is described in the drift-diffusion approximation. It is shown that at the large distances the interaction force between colloidal particles has the Debye screened asymptotic while for the grains the Coulomb-like behavior is observed. The dependence of the grain charge collected due to the plasma particle absorption on the distance between two grains is studied. The possibility of introducing effective Coulomb description of finite-size grain interaction in weakly ionized strongly collisional plasma is discussed.
Collapse
Affiliation(s)
- A I Momot
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrs'ka Street, Kyiv 01601, Ukraine
| | - A G Zagorodny
- M.M. Bogolubov Institute for Theoretical Physics, National Academy of Science of Ukraine, 14b, Metrologichna Street, Kyiv 03680, Ukraine
| | - I S Orel
- Pierre and Marie Curie University (UPMC), 4 place Jussieu, Paris 75252, France
| |
Collapse
|
11
|
A DYNAMIC DENSITY FUNCTIONAL THEORY APPROACH TO DIFFUSION IN WHITE DWARFS AND NEUTRON STAR ENVELOPES. ACTA ACUST UNITED AC 2016. [DOI: 10.3847/0004-637x/829/1/16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Khrapak SA, Kryuchkov NP, Yurchenko SO, Thomas HM. Practical thermodynamics of Yukawa systems at strong coupling. J Chem Phys 2015; 142:194903. [DOI: 10.1063/1.4921223] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Sergey A. Khrapak
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
- Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20, France
| | - Nikita P. Kryuchkov
- Bauman Moscow State Technical University, 2-nd Baumanskaya St. 5, Moscow 105005, Russia
| | | | - Hubertus M. Thomas
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
| |
Collapse
|
13
|
Khrapak SA, Thomas HM. Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033110. [PMID: 25871227 DOI: 10.1103/physreve.91.033110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 06/04/2023]
Abstract
The conventional fluid description of multicomponent plasma, supplemented by an appropriate equation of state for the macroparticle component, is used to evaluate the longitudinal sound velocity of Yukawa fluids. The obtained results are in very good agreement with those obtained earlier employing the quasilocalized charge approximation and molecular dynamics simulations in a rather broad parameter regime. Thus, a simple yet accurate tool to estimate the sound velocity across coupling regimes is proposed, which can be particularly helpful in estimating the dust-acoustic velocity in strongly coupled dusty (complex) plasmas. It is shown that, within the present approach, the sound velocity is completely determined by particle-particle correlations and the neutralizing medium (plasma), apart from providing screening of the Coulomb interaction, has no other effect on the sound propagation. The ratio of the actual sound velocity to its "ideal gas" (weak coupling) scale only weakly depends on the coupling strength in the fluid regime but exhibits a pronounced decrease with the increase of the screening strength. The limitations of the present approach in applications to real complex plasmas are briefly discussed.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| | - Hubertus M Thomas
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| |
Collapse
|
14
|
Khrapak SA, Thomas HM. Practical expressions for the internal energy and pressure of Yukawa fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:023108. [PMID: 25768619 DOI: 10.1103/physreve.91.023108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Simple practical expressions that allow estimation of thermodynamic properties of Yukawa fluids in a wide range of coupling, up to the fluid-solid phase transition, are presented. These expressions demonstrate excellent agreement with the available results from numerical simulations. The approach provides simple and accurate tools to estimate thermodynamic properties of Yukawa fluids and related systems in a broad range of parameters.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| | - Hubertus M Thomas
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| |
Collapse
|