1
|
Bayram AG, Biancofiore L, Löwen H. Dynamics of an active chiral polymer in shear flow. J Chem Phys 2025; 162:174903. [PMID: 40314283 DOI: 10.1063/5.0268723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
We explore the complex formation of an active flexible polymer chain in linear shear flow by using monomer-resolved Brownian dynamics simulations in two spatial dimensions. The chiral head monomer is active and circling, while all other monomers are passive, following both the motion of the head polymer and the shear flow. By the combination of activity, chirality, and shear rate, a wealth of different states are found, including the formation of a linear/complex folding and a spiraling state with both head-in and head-out morphologies. As the vorticity of the applied shear competes with the circling sense of the head, the chirality of the whole complex can be tuned by activity. Our results are relevant to characterize the response of living and artificial chiral active polymer chains to complex flow fields.
Collapse
Affiliation(s)
- A Gülce Bayram
- Department of Mechanical Engineering, Bilkent University, Çankaya, 06800 Ankara, Turkey
| | - Luca Biancofiore
- Department of Mechanical Engineering, Bilkent University, Çankaya, 06800 Ankara, Turkey
- Department of Industrial Engineering Information and Economics, University of L'Aquila, Piazzale Ernesto Pontieri Monteluco di Roio, L'Aquila 67100, Italy
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Winkler RG. Conformational properties of active polar semiflexible phantom polymers. J Chem Phys 2025; 162:154903. [PMID: 40249039 DOI: 10.1063/5.0260802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
The conformational properties of semiflexible active polar linear and ring phantom polymers are analyzed analytically to shed light on their dependence on activity. Special attention is paid to the influence of the implemented bond force for discrete and continuous polymer models. In detail, the Gaussian semiflexible polymer model and a model with a harmonic bond potential with finite bond length are considered. The studies reveal the immanent effects of the particular bond model on the polymer conformations as well as on the discrete or continuous representation. For continuum models, activity implies polymer end effects only, whereas for discrete models, all bonds can contribute to activity-dependent conformational changes. Ring polymers lack end effects; hence, continuous rings exhibit the same conformations as passive polymers. Similarly, the conformations of inextensible continuous polymers (Kratky-Porod worm-like chain) are activity-independent. These findings are in contrast to passive polymers, where a wide spectrum of bond potentials capture their generic features. Hence, this universality is broken by activity, and a model must be carefully selected to capture the characteristics observed in experiments.
Collapse
Affiliation(s)
- Roland G Winkler
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany and Department of Physics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| |
Collapse
|
3
|
Li B, Fu CL, Sun ZY. Shaping membrane vesicles by tuning the activity of confined active polymer chains. J Chem Phys 2025; 162:094901. [PMID: 40029089 DOI: 10.1063/5.0244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Semi-flexible polymers, such as actin filaments, can deform the shape of membrane when confined in a membrane vesicle, playing an important role in biological processes. Here, we use dynamic Monte Carlo simulations to study an active polymer chain confined in a membrane vesicle. For flexible polymer chains, the membrane shape is governed by the competition between membrane bending rigidity and polymer activity. Stiff membrane is unaffected by small active forces, but moderate forces cause the polymer to alternate between stretched and disordered configurations, increasing the asphericity of both the polymer and the vesicle. For semi-flexible polymer chains, their stiffness can significantly impact both the vesicle and polymer shapes. We identify distinct classes of configurations that emerge as a function of polymer stiffness, membrane bending rigidity, and polymer activity. A weak polymer activity can cause the polymer to align along its contour, effectively increasing its stiffness. However, a moderate polymer activity softens the polymer chain. For membranes with low bending rigidities κ, large-scale deformations, such as wormlike or tadpole-shaped vesicles, appear at a weak polymer activity and high polymer stiffness. In the wormlike configuration, the polymer chain adopts a hairpin configuration to minimize the polymer bending energy. As the polymer stiffness increases, a tadpole-like vesicle forms, with part of the polymer deforming the membrane into a protrusion while the rest remaining confined in a bud-like structure. For stiffer membranes, we observe oblate vesicles containing toroidal polymer chains, resulting from the high cost of membrane bending energy. A moderate polymer activity causes the softening of the polymer chain, leading to a nearly spherical vesicle with slight shape fluctuation. We further characterize the order parameter of toroidal polymer chains in oblate vesicles and reveal that a slight increase in polymer activity leads to a more ordered helical structure of polymer chains.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Cui-Liu Fu
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Ravichandir S, Valecha B, Muzzeddu PL, Sommer JU, Sharma A. Transport of partially active polymers in chemical gradients. SOFT MATTER 2025; 21:1835-1840. [PMID: 39973334 DOI: 10.1039/d4sm01357c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The transport of molecules for chemical reactions is critically important in various cellular biological processes. Despite thermal diffusion being prevalent in many biochemical processes, it is unreliable for any sort of directed transport or preferential accumulation of molecules. In this paper, we propose a strategy for directed motion in which the molecules are transported by partially active polymeric structures. These polymers are assumed to be Rouse chains, in which the monomers are connected via harmonic springs and these chains are studied in environments that have activity varying spatially. The transport of such polymers is facilitated by these chemical/activity gradients which generate an effective drift. By marginalizing out the active degrees of freedom of the system, we obtain an effective Fokker-Planck equation for the Rouse modes of the polymer. In particular, we solve for the steady state distribution of the center of mass and its mean first passage time to reach an intended destination. We focus on how the arrangement of active units within the polymer affects its steady-state and dynamic behavior and how they can be optimized to achieve high accumulation or rapid motility.
Collapse
Affiliation(s)
- Shashank Ravichandir
- Institut Theory der Polymere, Leibniz-Institut für Polymerforschung, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Bhavesh Valecha
- Institut für Physik, Universität Augsburg, 86159 Agusburg, Germany.
| | | | - Jens-Uwe Sommer
- Institut Theory der Polymere, Leibniz-Institut für Polymerforschung, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Abhinav Sharma
- Institut Theory der Polymere, Leibniz-Institut für Polymerforschung, 01069 Dresden, Germany
- Institut für Physik, Universität Augsburg, 86159 Agusburg, Germany.
| |
Collapse
|
5
|
Muzzeddu PL, Gambassi A, Sommer JU, Sharma A. Migration and Separation of Polymers in Nonuniform Active Baths. PHYSICAL REVIEW LETTERS 2024; 133:118102. [PMID: 39331988 DOI: 10.1103/physrevlett.133.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024]
Abstract
Polymerlike structures are ubiquitous in nature and synthetic materials. Their configurational and migration properties are often affected by crowded environments leading to nonthermal fluctuations. Here, we study an ideal Rouse chain in contact with a nonhomogeneous active bath, characterized by the presence of active self-propelled agents which exert time-correlated forces on the chain. By means of a coarse-graining procedure, we derive an effective evolution for the center of mass of the chain and show its tendency to migrate toward and preferentially localize in regions of high and low bath activity depending on the model parameters. In particular, we demonstrate that an active bath with nonuniform activity can be used to separate efficiently polymeric species with different lengths and/or connectivity.
Collapse
|
6
|
Schiltz-Rouse E, Row H, Mallory SA. Kinetic temperature and pressure of an active Tonks gas. Phys Rev E 2023; 108:064601. [PMID: 38243499 DOI: 10.1103/physreve.108.064601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/06/2023] [Indexed: 01/21/2024]
Abstract
Using computer simulation and analytical theory, we study an active analog of the well-known Tonks gas, where active Brownian particles are confined to a periodic one-dimensional (1D) channel. By introducing the notion of a kinetic temperature, we derive an accurate analytical expression for the pressure and clarify the paradoxical behavior where active Brownian particles confined to 1D exhibit anomalous clustering but no motility-induced phase transition. More generally, this work provides a deeper understanding of pressure in active systems as we uncover a unique link between the kinetic temperature and swim pressure valid for active Brownian particles in higher dimensions.
Collapse
Affiliation(s)
- Elijah Schiltz-Rouse
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hyeongjoo Row
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California 94720, USA
| | - Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
7
|
Fazli Z, Naji A. Rectification of polymer translocation through nanopores by nonchiral and chiral active particles. Phys Rev E 2023; 107:024602. [PMID: 36932605 DOI: 10.1103/physreve.107.024602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
We study translocation of a flexible polymer chain through a membrane pore under the influence of active forces and steric exclusion using Langevin dynamics simulations within a minimal two-dimensional model. The active forces on the polymer are imparted by nonchiral and chiral active particles that are introduced on one side or both sides of a rigid membrane positioned across the midline of a confining box. We show that the polymer can translocate through the pore to either side of the dividing membrane in the absence of external forcing. Translocation of the polymer to a given side of the membrane is driven (hindered) by an effective pulling (pushing) exerted by the active particles that are present on that side. The effective pulling results from accumulation of active particles around the polymer. This crowding effect signifies persistent motion of active particles causing prolonged detention times for them close to the confining walls and the polymer. The effective pushing that hinders the translocation, on the other hand, results from steric collisions that occur between the polymer and active particles. As a result of the competition between these effective forces, we find a transition between two rectified cis-to-trans and trans-to-cis translocation regimes. This transition is identified by a sharp peak in the average translocation time. The effects of active particles on the transition is studied by analyzing how the translocation peak is regulated by the activity (self-propulsion) strength of these particles, their area fraction, and chirality strength.
Collapse
Affiliation(s)
- Zahra Fazli
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Ali Naji
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| |
Collapse
|
8
|
Tejedor AR, Carracedo R, Ramírez J. Molecular dynamics simulations of active entangled polymers reptating through a passive mesh. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Anderson CJ, Briand G, Dauchot O, Fernández-Nieves A. Polymer-chain configurations in active and passive baths. Phys Rev E 2022; 106:064606. [PMID: 36671158 DOI: 10.1103/physreve.106.064606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
The configurations taken by polymers embedded in out-of-equilibrium baths may have broad implications in a variety of biological systems. As such, they have attracted considerable interest, particularly in simulation studies. Here we analyze the distribution of configurations taken by a passive flexible chain in a bath of hard, self-propelled, vibrated disks and systematically compare it to that of the same flexible chain in a bath of hard, thermal-like, vibrated disks. We demonstrate experimentally that the mean length and mean radius of gyration of both chains agree with Flory's law. However, the Kuhn length associated with the number of correlated monomers is smaller in the case of the active bath, corresponding to a higher effective temperature. Importantly, the active bath does not just simply map on a hot equilibrium bath. Close examination of the chains' configurations indicates a marked bias, with the chain in the active bath more likely assuming configurations with a single prominent bend.
Collapse
Affiliation(s)
- Caleb J Anderson
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain.,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Guillaume Briand
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL University, 10, rue Vauquelin, 75231 Paris de cedex 05, France
| | - Olivier Dauchot
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL University, 10, rue Vauquelin, 75231 Paris de cedex 05, France
| | - Alberto Fernández-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain.,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.,Institute for Complex Systems (UBICS), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Wang Y, Gao YW, Tian WD, Chen K. Obstacle-induced giant jammed aggregation of active semiflexible filaments. Phys Chem Chem Phys 2022; 24:23779-23789. [PMID: 36156612 DOI: 10.1039/d2cp02819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Filaments driven by bound motor proteins and chains of self-propelled colloidal particles are a typical example of active polymers (APs). Due to deformability, APs exhibit very rich dynamic behaviors and collective assembling structures. Here, we are concerned with a basic question: how APs behave near a single obstacle? We find that, in the presence of a big single obstacle, the assembly of APs becomes a two-state system, i.e. APs either gather nearly completely together into a giant jammed aggregate (GJA) on the surface of the obstacle or distribute freely in space. No partial aggregation is observed. Such a complete aggregation/collection is unexpected since it happens on a smooth convex surface instead of, e.g., a concave wedge. We find that the formation of a GJA experiences a process of nucleation and the curves of the transition between the GJA and the non-aggregate state form hysteresis-like loops. Statistical analysis of massive data on the growing time, chirality and angular velocity of both the GJAs and the corresponding nuclei shows the strong random nature of the phenomenon. Our results provide new insights into the behavior of APs in contact with porous media and also a reference for the design and application of polymeric active materials.
Collapse
Affiliation(s)
- Ying Wang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Yi-Wen Gao
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China. .,School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
11
|
Ghosh A, Spakowitz AJ. Active and thermal fluctuations in multi-scale polymer structure and dynamics. SOFT MATTER 2022; 18:6629-6637. [PMID: 36000419 DOI: 10.1039/d2sm00593j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of athermal noise or biological fluctuations control and maintain crucial life-processes. In this work, we present an exact analytical treatment of the dynamic behavior of a flexible polymer chain that is subjected to both thermal and active forces. Our model for active forces incorporates temporal correlation associated with the characteristic time scale and processivity of enzymatic function (driven by ATP hydrolysis), leading to an active-force time scale that competes with relaxation processes within the polymer chain. We analyze the structure and dynamics of an active-Brownian polymer using our exact results for the dynamic structure factor and the looping time for the chain ends. The spectrum of relaxation times within a polymer chain implies two different behaviors at small and large length scales. Small length-scale relaxation is faster than the active-force time scale, and the dynamic and structural behavior at these scales are oblivious to active forces and, are thus governed by the true thermal temperature. Large length-scale behavior is governed by relaxation times that are much longer than the active-force time scale, resulting in an effective active-Brownian temperature that dramatically alters structural and dynamic behavior. These complex multi-scale effects imply a time-dependent temperature that governs living and non-equilibrium systems, serving as a unifying concept for interpreting and predicting their physical behavior.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California, USA.
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California, USA.
- Biophysics Program, Stanford University, Stanford, California, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Paul S, Majumder S, Janke W. Activity mediated globule to coil transition of a flexible polymer in a poor solvent. SOFT MATTER 2022; 18:6392-6403. [PMID: 35979819 DOI: 10.1039/d2sm00354f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the role of self-propulsion on the conformational properties of active filamentous objects has relevance in biology. In this work, we consider a flexible bead-spring model for active polymers with both attractive and repulsive interactions among the non-bonded monomers. The activity for each monomer works along its intrinsic direction of self-propulsion which changes diffusively with time. We study its kinetics in the overdamped limit, following quenching from good to poor solvent conditions. We observe that with low activities, though the kinetic pathways remain similar, the scaling exponent for the relaxation time of globule formation becomes smaller than that for the case with no activity. Interestingly, for higher activities when self-propulsion dominates over interaction energy, the polymer conformation becomes extended coil-like. There, in the steady state, the variation of the spatial extension of the polymer, measured via its gyration radius, shows two completely different scaling regimes: the corresponding Flory exponent ν changes from 1/3 to 3/5 similar to a transition of the polymer from a globular state to a self-avoiding walk. This can be explained by an interplay among the three energy scales present in the system, viz., the "ballistic", thermal, and interaction energy.
Collapse
Affiliation(s)
- Subhajit Paul
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India
| | - Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| |
Collapse
|
13
|
Philipps CA, Gompper G, Winkler RG. Dynamics of active polar ring polymers. Phys Rev E 2022; 105:L062501. [PMID: 35854564 DOI: 10.1103/physreve.105.l062501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The conformational and dynamical properties of isolated semiflexible active polar ring polymers are investigated analytically. A ring is modeled as a continuous Gaussian polymer exposed to tangential active forces. The analytical solution of the linear non-Hermitian equation of motion in terms of an eigenfunction expansion shows that ring conformations are independent of activity. In contrast, activity strongly affects the internal ring dynamics and yields characteristic time regimes, which are absent in passive rings. On intermediate timescales, flexible rings show an activity-enhanced diffusive regime, while semiflexible rings exhibit ballistic motion. Moreover, a second active time regime emerges on longer timescales, where rings display a snake-like motion, which is reminiscent to a tank-treading rotational dynamics in shear flow, dominated by the mode with the longest relaxation time.
Collapse
Affiliation(s)
- Christian A Philipps
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| |
Collapse
|
14
|
Mao DJ, Qin CR, Tian WD. Kick effect of enzymes causes filament compression. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:284003. [PMID: 35477158 DOI: 10.1088/1361-648x/ac6b09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
We investigate the influence of enzymes on the structure and dynamics of a filament by dissipative particle dynamics simulations. Enzyme exerts a kick force on the filament monomer. We pay particular attention to two factors: the magnitude of kick force and enzyme concentration. Large kick force as well as high enzyme concentration prefers a remarkable compression of the filament reminiscent of the effective depletion interaction owing to an effective increase in enzyme size and the reduction of solvent quality. Additionally, the kick effect gives rise to an increase of enzyme density from the center-of-mass of the filament to its periphery. Moreover, the increase of enzyme concentration and kick force also causes a decrease in relaxation time. Our finding is helpful to understand the role of catalytic force in chemo-mechano-biological function and the filament behavior under chemical reaction via kick-induced change of solvent quality.
Collapse
Affiliation(s)
- Dan-Jian Mao
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Chao-Ran Qin
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
- Department of Chemical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| |
Collapse
|
15
|
Gandikota MC, Cacciuto A. Effective forces between active polymers. Phys Rev E 2022; 105:034503. [PMID: 35428068 DOI: 10.1103/physreve.105.034503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The characterization of the interactions between two fully flexible self-avoiding polymers is one of the classic and most important problems in polymer physics. In this paper we measure these interactions in the presence of active fluctuations. We introduce activity into the problem using two of the most popular models in this field, one where activity is effectively embedded into the monomers' dynamics, and the other where passive polymers fluctuate in an explicit bath of active particles. We establish the conditions under which the interaction between active polymers can be mapped into the classical passive problem. We observe that the active bath can drive the development of strong attractive interactions between the polymers and that, upon enforcing a significant degree of overlap, they come together to form a single double-stranded unit. A phase diagram tracing this change in conformational behavior is also reported.
Collapse
Affiliation(s)
- M C Gandikota
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
16
|
Wu JC, Lin FJ, Ai BQ. Absolute negative mobility of active polymer chains in steady laminar flows. SOFT MATTER 2022; 18:1194-1200. [PMID: 35037681 DOI: 10.1039/d1sm01664d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We investigate the transport of active polymer chains in steady laminar flows in the presence of thermal noise and an external constant force. In the model, the polymer chain is worm-like and is propelled by active forces along its tangent vectors. Compared with inertial Brownian particles, active polymer chains in steady laminar flows exhibit richer movement patterns due to their specific spatial structures. The simulation results show that the velocity-force relation is strongly dependent on the system parameters such as the chain length, bending rigidity, active force and so on. The polymer chain may move in some preferential movement directions and exhibits absolute negative mobility within appropriate parameter regimes, i.e., the polymer chain can move in a direction opposite to the external constant force. In particular, we can observe giant negative mobility in a broad range of parameter regimes.
Collapse
Affiliation(s)
- Jian-Chun Wu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China.
- School of Physics and Electronic Information, Shangrao Normal University, Shangrao 334001, China
| | - Fu-Jun Lin
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China.
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Eisenstecken T, Winkler RG. Path integral description of semiflexible active Brownian polymers. J Chem Phys 2022; 156:064105. [DOI: 10.1063/5.0081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| |
Collapse
|
18
|
Sampat PB, Mishra S. Polar swimmers induce several phases in active nematics. Phys Rev E 2021; 104:024130. [PMID: 34525577 DOI: 10.1103/physreve.104.024130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023]
Abstract
Swimming bacteria in passive nematics in the form of lyotropic liquid crystals are defined as a new class of active matter known as living liquid crystals in recent studies. It has also been shown that liquid crystal solutions are promising candidates for trapping and detecting bacteria. We ask the question, can a similar class of matter be designed for background nematics which are also active? Hence, we developed a minimal model for the mixture of polar particles in active nematics. It is found that the active nematics in such a mixture are highly sensitive to the presence of polar particles and show the formation of large scale higher order structures for a relatively low polar particle density. Upon increasing the density of polar particles, different phases of active nematics are found and it is observed that the system shows two phase transitions. The first phase transition is a first order transition from quasi-long-ranged ordered active nematics to disordered active nematics with larger scale structures. On further increasing density of polar particles, the system transitions to a third phase, where polar particles form large, mutually aligned clusters. These clusters sweep the whole system and enforce local order in the nematics. The current study can be helpful for detecting the presence of very low densities of polar swimmers in active nematics and can be used to design and control different structures in active nematics.
Collapse
Affiliation(s)
- Pranay Bimal Sampat
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, U.P. - 221005 India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, U.P. - 221005 India
| |
Collapse
|
19
|
Mousavi SM, Gompper G, Winkler RG. Active bath-induced localization and collapse of passive semiflexible polymers. J Chem Phys 2021; 155:044902. [PMID: 34340385 DOI: 10.1063/5.0058150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The conformational and dynamical properties of a passive polymer embedded in a bath of active Brownian particles (ABPs) are studied by Langevin dynamics simulations. Various activities and ABP concentrations below and above the critical values for motility-induced phase separation (MIPS) are considered. In a homogeneous ABP fluid, the embedded polymer swells with increasing bath activity, with stronger swelling for larger densities. The polymer dynamics is enhanced, with the diffusion coefficient increasing by a power-law with increasing activity, where the exponent depends on the ABP concentration. For ABP concentrations in the MIPS regime, we observe a localization of the polymer in the low-density ABP phase associated with polymer collapse for moderate activities and a reswelling for high activities accompanied by a preferred localization in the high-density ABP phase. Localization and reswelling are independent of the polymer stiffness, with stiff polymers behaving similarly to flexible polymers. The polymer collapse is associated with a slowdown of its dynamics and a significantly smaller center-of-mass diffusion coefficient. In general, the polymer dynamics can only partially be described by an effective (bath) temperature. Moreover, the properties of a polymer embedded in a homogeneous active bath deviate quantitatively from those of a polymer composed of active monomers, i.e., linear chains of ABPs; however, such a polymer exhibits qualitatively similar activity-dependent features.
Collapse
Affiliation(s)
- S Mahdiyeh Mousavi
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
20
|
Zhang B, Lei T, Zhao N. Comparative study of polymer looping kinetics in passive and active environments. Phys Chem Chem Phys 2021; 23:12171-12190. [PMID: 34008649 DOI: 10.1039/d1cp00591j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intra-chain looping in complex environments is significant in advancing our understanding of biological processes in life. We adopt Langevin dynamics simulations to perform a comparative study of polymer looping kinetics in passive and active environments. From the analysis of looping quantities, including looping-unlooping times and looping probabilities, we unraveled the intriguing effects of active crowder size, activity and crowding. Firstly, we figured out the phase diagram involving a novel facilitation-inhibition transition in the parameter space of active crowder size and active force, and the two-fold roles of activity are clarified. In particular, we find that active particles of a size comparable to the polymer monomer are most favorable for facilitated looping, while those with a similar size to the polymer gyration radius impede the looping most seriously. Secondly, the underlying looping mechanisms in different active crowder size regimes are rationalized by the interplay among diffusion, polymer conformational change and the free-energy barrier. For small active crowders, activity significantly promotes end-to-end distance diffusion, which dominantly facilitates both looping and unlooping processes. In the case of moderate active crowders, the polymer chain suffers from prominent swelling, and thus inevitable inhibited looping will occur. For large active crowders, activity induces a counterintuitive non-cage effect on the looping kinetics, through yielding a higher effective temperature and larger unlooping free-energy barrier. This is in sharp contrast to the caging phenomena observed in passive media. Lastly, the volume-fraction dependence of the looping quantities in an active bath demonstrates dramatic discrepancies from that in a passive bath, which highlights the contrasting effects of activity and crowding.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
21
|
Das S, Kennedy N, Cacciuto A. The coil-globule transition in self-avoiding active polymers. SOFT MATTER 2021; 17:160-164. [PMID: 33164018 DOI: 10.1039/d0sm01526a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We perform numerical simulations of an active fully flexible self-avoiding polymer as a function of the quality of the embedding solvent described in terms of an effective monomer-monomer interaction. Specifically, by extracting the Flory exponent of the active polymer under different conditions, we are able to pin down the location of the coil-globule transition for different strengths of the active forces. Remarkably, we find that a simple rescaling of the temperature is capable of qualitatively capturing the dependence of the Θ-point of the polymer on the amplitude of active fluctuations. We discuss the limits of this mapping and suggest that a negative active pressure between the monomers, not unlike the one that has already been found in suspensions of active hard spheres, may also be present in active polymers.
Collapse
Affiliation(s)
- S Das
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.
| | | | | |
Collapse
|
22
|
Das S, Ghosh S, Chelakkot R. Aggregate morphology of active Brownian particles on porous, circular walls. Phys Rev E 2020; 102:032619. [PMID: 33075888 DOI: 10.1103/physreve.102.032619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
We study the motility-induced aggregation of active Brownian particles (ABPs) on a porous, circular wall. We observe that the morphology of aggregated dense-phase on a static wall depends on the wall porosity, particle motility, and the radius of the circular wall. Our analysis reveals two morphologically distinct, dense aggregates; a connected dense cluster that spreads uniformly on the circular wall and a localized cluster that breaks the rotational symmetry of the system. These distinct morphological states are similar to the macroscopic structures observed in aggregates on planar, porous walls. We systematically analyze the parameter regimes where the different morphological states are observed. We further extend our analysis to motile circular rings. We show that the motile ring propels almost ballistically due to the force applied by the active particles when they form a localized cluster, whereas it moves diffusively when the active particles form a continuous cluster. This property demonstrates the possibility of extracting useful work from a system of ABPs, even without artificially breaking the rotational symmetry.
Collapse
Affiliation(s)
- Suchismita Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sounok Ghosh
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
23
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
24
|
Quillen AC, Smucker JP, Peshkov A. Boids in a loop: Self-propelled particles within a flexible boundary. Phys Rev E 2020; 101:052618. [PMID: 32575281 DOI: 10.1103/physreve.101.052618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2020] [Indexed: 11/07/2022]
Abstract
We numerically explore the behavior of repelling and aligning self-propelled polar particles (boids) in two dimensions enclosed by a damped flexible and elastic loop-shaped boundary. We observe disordered, polar ordered, jammed, and circulating states. The latter produce a rich variety of boundary shapes, including circles, ovals, irregulars, ruffles, or sprockets, depending upon the bending moment of the boundary and the boundary to particle mass ratio. With the exception of the circulating states with nonround boundaries, states resemble those exhibited by attracting self-propelled particles, but here the confining boundary acts in place of a cohesive force. We attribute the formation of ruffles to instability mediated by pressure on the boundary when the speed of waves on the boundary approximately matches the self-propelled particle's swim speed.
Collapse
Affiliation(s)
- A C Quillen
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14618, USA
| | - J P Smucker
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14618, USA.,Department of Physics, Pennsylvania State University, Behrend, Pennsylvania 16513, USA
| | - A Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14618, USA
| |
Collapse
|
25
|
Shafiei Aporvari M, Utkur M, Saritas EU, Volpe G, Stenhammar J. Anisotropic dynamics of a self-assembled colloidal chain in an active bath. SOFT MATTER 2020; 16:5609-5614. [PMID: 32519706 DOI: 10.1039/d0sm00318b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anisotropic macromolecules exposed to non-equilibrium (active) noise are very common in biological systems, and an accurate understanding of their anisotropic dynamics is therefore crucial. Here, we experimentally investigate the dynamics of isolated chains assembled from magnetic microparticles at a liquid-air interface and moving in an active bath consisting of motile E. coli bacteria. We investigate both the internal chain dynamics and the anisotropic center-of-mass dynamics through particle tracking. We find that both the internal and center-of-mass dynamics are greatly enhanced compared to the passive case, i.e., a system without bacteria, and that the center-of-mass diffusion coefficient D features a non-monotonic dependence as a function of the chain length. Furthermore, our results show that the relationship between the components of D parallel and perpendicular with respect to the direction of the applied magnetic field is preserved in the active bath compared to the passive case, with a higher diffusion in the parallel direction, in contrast to previous findings in the literature. We argue that this qualitative difference is due to subtle differences in the experimental geometry and conditions and the relative roles played by long-range hydrodynamic interactions and short-range collisions.
Collapse
Affiliation(s)
- Mehdi Shafiei Aporvari
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey. and National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Mustafa Utkur
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey and Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Emine Ulku Saritas
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey and Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden.
| |
Collapse
|
26
|
Liu X, Jiang H, Hou Z. Non-monotonic dependence of polymer chain dynamics on active crowder size. J Chem Phys 2020; 152:204906. [PMID: 32486672 DOI: 10.1063/5.0007570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Configuration dynamics of flexible polymer chains is of ubiquitous importance in many biological processes. Here, we investigate a polymer chain immersed in a bath of size-changed active particles in two dimensional space using Langevin dynamics simulations. Particular attention is paid to how the radius of gyration Rg of the polymer chain depends on the size σc of active crowders. We find that Rg shows nontrivial non-monotonic dependence on σc: The chain first swells upon increasing σc, reaching a fully expanded state with maximum Rg, and then, Rg decreases until the chain collapses to a compact coil state if the crowder is large enough. Interestingly, the chain may oscillate between a collapse state and a stretched state at moderate crowder size. Analysis shows that it is the competition between two effects of active particles, one stretching the chain from inside due to persistence motion and the other compressing the chain from outside, that leads to the non-monotonic dependence. Besides, the diffusion of the polymer chain also shows nontrivial non-monotonic dependence on σc. Our results demonstrate the important interplay between particle activity and size associated with polymer configurations in active crowding environments.
Collapse
Affiliation(s)
- Xinshuang Liu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Ye S, Liu P, Ye F, Chen K, Yang M. Active noise experienced by a passive particle trapped in an active bath. SOFT MATTER 2020; 16:4655-4660. [PMID: 32373861 DOI: 10.1039/d0sm00006j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the properties of active noise experienced by a passive particle harmonically trapped in an active bath. The active bath is either explicitly simulated by an ensemble of active Brownian particles or abstractly represented by an active colored noise in theory. Assuming the equivalence of the two descriptions of the active bath, the active noise in the simulation system, which is directly extracted by fitting theoretical predictions to simulation measurements, is shown to depend on the constraint suffered by the passive tracer. This scenario is in significant contrast to the case of thermal noise that is independent of external trap potentials. The constraint dependence of active noise arises from the fact that the persistent force on the passive particle from the active bath can be influenced by the particle relaxation dynamics. Moreover, due to the interplay between the active collisions and particle relaxation dynamics, the effective temperature of the passive tracer quantified as the ratio of fluctuation to dissipation increases as the constraint strengthens, while the average potential and kinetic energies of the passive particle both decrease.
Collapse
Affiliation(s)
- Simin Ye
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Martin-Gomez A, Eisenstecken T, Gompper G, Winkler RG. Hydrodynamics of polymers in an active bath. Phys Rev E 2020; 101:052612. [PMID: 32575238 DOI: 10.1103/physreve.101.052612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The conformational and dynamical properties of active polymers in solution are determined by the nature of the activity. Here, the behavior of polymers with self-propelled, active Brownian particle-type monomers differs qualitatively from that of polymers with monomers driven externally by colored-noise forces. We present simulation and theoretical results for polymers in solution in the presence of external active noise. In simulations, a semiflexible bead-spring chain is considered, in analytical calculations, a continuous linear wormlike chain. Activity is taken into account by independent monomer or site velocities, with orientations changing in a diffusive manner. In simulations, hydrodynamic interactions (HIs) are taken into account by the Rotne-Prager-Yamakawa tensor or by an implementation of the active polymer in the multiparticle-collision-dynamics approach for fluids. To arrive at an analytical solution, the preaveraged Oseen tensor is employed. The active process implies a dependence of the stationary-state properties on HIs via the polymer relaxation times. With increasing activity, HIs lead to an enhanced swelling of flexible polymers, and the conformational properties differ substantially from those of polymers with self-propelled monomers in the presence of HIs, or free-draining polymers. The polymer mean-square displacement is enhanced by HIs. Over a wide range of timescales, hydrodynamics leads to a subdiffusive regime of the site mean-square displacement for flexible active polymers, with an exponent of 5/7, larger than that of the Rouse (1/2) and Zimm (2/3) models of passive polymers.
Collapse
Affiliation(s)
- Aitor Martin-Gomez
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
29
|
Chen A, Zhang B, Zhao N. A comparative study of semi-flexible linear and ring polymer conformational change in an anisotropic environment. Phys Chem Chem Phys 2020; 22:9137-9147. [PMID: 32301953 DOI: 10.1039/c9cp07018d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We adopt a Langevin-dynamics based simulation to systematically study the conformational change of a semi-flexible probed polymer in a rod crowding environment. Two topologically different probed polymer types, linear and ring polymers, are specifically considered. Our results unravel the significance of the interplay of probed polymer's semi-flexibility and crowding anisotropy. Firstly, both ring and linear polymers show a non-trivial dimensional change including nonmonotonicity and collapse-swelling crossover as their stiffness increases. Secondly, we modulate rod crowder length to investigate the anisotropic effect. We reveal that the formation of an ordered parallel arrangement of the environment can effectively lead to a remarkable stretching effect on the probed polymer. The coupling between the crowding anisotropy-induced stretching and the polymer stiffness can account for the unusual swelling behavior. Lastly, nonmonotonic swelling and shape change of the ring polymer are analyzed. We find out that the ring polymer is subject to most pronounced swelling at robust stiffness. Moreover, the maximum prolate shape is also observed at the same robust location.
Collapse
Affiliation(s)
- Anpu Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | | | | |
Collapse
|
30
|
Liu P, Ye S, Ye F, Chen K, Yang M. Constraint Dependence of Active Depletion Forces on Passive Particles. PHYSICAL REVIEW LETTERS 2020; 124:158001. [PMID: 32357018 DOI: 10.1103/physrevlett.124.158001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/22/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Using simulations and experiments, we demonstrate that the effective interaction between passive particles in an active bath substantially depends on an external constraint suffered by the passive particles. Particularly, the effective interaction between two free passive particles, which is directly measured in simulation, is qualitatively different from the one between two fixed particles. Moreover, we find that the friction experienced by the passive particles-a kinematic constraint-similarly influences the effective interaction. These remarkable features are in significant contrast to the equilibrium cases, and mainly arise from the accumulation of the active particles near the concave gap formed by the passive spheres. This constraint dependence not only deepens our understanding of the "active depletion force," but also provides an additional tool to tune the effective interactions in an active bath.
Collapse
Affiliation(s)
- Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simin Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Cao X, Zhang B, Zhao N. Contrastive factors of activity and crowding on conformational properties of a flexible polymer. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Tejedor AR, Ramírez J. Dynamics of entangled polymers subjected to reptation and drift. SOFT MATTER 2020; 16:3154-3168. [PMID: 32159579 DOI: 10.1039/d0sm00056f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work we formulate a model to study the dynamical response of entangled polymers subjected to a constant drift. The drift may originate from an internal activity that acts along the primitive path of the tube. Here, we expand our previous work (A. R. Tejedor and J. Ramirez, Macromolecules, 2019, 52, 8788-8792) and solve analytically the most significant observables of the theory, providing explicit results to observables not considered previously, such as the tangent-tangent correlation function and the dynamic structure factor. These analytical results are compared and verified by means of Brownian dynamics simulations of the tube model. Interestingly, while the mean squared displacement of the chain segments is always subdiffusive, the center of mass shows a superdiffusive regime when the magnitude of the drift is significant. We provide scaling arguments to explain this phenomenon. We also consider the effect of contour-length fluctuations and describe two different approaches to introduce a drift using active particles.
Collapse
Affiliation(s)
- Andrés R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | | |
Collapse
|
33
|
Natali L, Caprini L, Cecconi F. How a local active force modifies the structural properties of polymers. SOFT MATTER 2020; 16:2594-2604. [PMID: 32091062 DOI: 10.1039/c9sm02258a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the dynamics of a polymer, described as a variant of a Rouse chain, driven by an active terminal monomer (head). The local active force induces a transition from a globule-like to an elongated state, as revealed by the study of the end-to-end distance, the variance of which is analytically predicted under suitable approximations. The change in the relaxation times of the Rouse-modes produced by the local self-propulsion is consistent with the transition from globule to elongated conformations. Moreover, also the bond-bond spatial correlation for the chain head are affected by the self-propulsion and a gradient of over-stretched bonds along the chain is observed. We compare our numerical results both with the phenomenological stiff-polymer theory and several analytical predictions in the Rouse-chain approximation.
Collapse
Affiliation(s)
- Laura Natali
- Dipartimento di Fisica, Università"Sapienza", Piazzale A. Moro 5, I00185 Rome, Italy
| | | | | |
Collapse
|
34
|
Anand SK, Singh SP. Conformation and dynamics of a self-avoiding active flexible polymer. Phys Rev E 2020; 101:030501. [PMID: 32289970 DOI: 10.1103/physreve.101.030501] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
We investigate conformations and dynamics of a polymer considering its monomers to be active Brownian particles. This active polymer shows very intriguing physical behavior which is absent in an active Rouse chain. The chain initially shrinks with active force, which starts swelling on further increase in force. The shrinkage followed by swelling is attributed purely to excluded-volume interactions among the monomers. In the swelling regime, the chain shows a crossover from the self-avoiding behavior to the Rouse behavior with scaling exponent ν_{a}≈1/2 for end-to-end distance. The nonmonotonicity in the structure is analyzed through various physical quantities; specifically, radial distribution function of monomers, scattering time, as well as various energy calculations. The chain relaxes faster than the Rouse chain in the intermediate force regime, with a crossover in variation of relaxation time at large active force as given by a power law τ_{r}∼Pe^{-4/3} (Pe is Péclet number).
Collapse
Affiliation(s)
- Shalabh K Anand
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
35
|
Cao X, Zhang B, Zhao N. Effective temperature scaled dynamics of a flexible polymer in an active bath. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1730992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiuli Cao
- College of Chemistry, Sichuan University, Chengdu, China
| | - Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Affiliation(s)
- Andrés R. Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
37
|
Liu X, Jiang H, Hou Z. Configuration dynamics of a flexible polymer chain in a bath of chiral active particles. J Chem Phys 2019; 151:174904. [DOI: 10.1063/1.5125607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xinshuang Liu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Mura F, Gradziuk G, Broedersz CP. Mesoscopic non-equilibrium measures can reveal intrinsic features of the active driving. SOFT MATTER 2019; 15:8067-8076. [PMID: 31576897 DOI: 10.1039/c9sm01169b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological assemblies such as chromosomes, membranes, and the cytoskeleton are driven out of equilibrium at the nanoscale by enzymatic activity and molecular motors. Similar non-equilibrium dynamics can be realized in synthetic systems, such as chemically fueled colloidal particles. Characterizing the stochastic non-equilibrium dynamics of such active soft assemblies still remains a challenge. Recently, new non-invasive approaches have been proposed to determine the non-equilibrium behavior, which are based on detecting broken detailed balance in the stochastic trajectories of several coordinates of the system. Inspired by the method of two-point microrheology, in which the equilibrium fluctuations of a pair of probe particles reveal the viscoelastic response of an equilibrium system, here, we investigate whether we can extend such an approach to non-equilibrium assemblies: can one extract information on the nature of the active driving in a system from the analysis of a two-point non-equilibrium measure? We address this question theoretically in the context of a class of elastic systems, driven out of equilibrium by a spatially heterogeneous stochastic internal driving. We consider several scenarios for the spatial features of the internal driving that may be relevant in biological and synthetic systems, and investigate how such features of the active noise may be reflected in the long-range scaling behavior of two-point non-equilibrium measures.
Collapse
Affiliation(s)
- Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | - Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| |
Collapse
|
39
|
Das S, Cacciuto A. Deviations from Blob Scaling Theory for Active Brownian Filaments Confined Within Cavities. PHYSICAL REVIEW LETTERS 2019; 123:087802. [PMID: 31491198 DOI: 10.1103/physrevlett.123.087802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 06/10/2023]
Abstract
Scaling arguments used to predict the radius of gyration of passive self-avoiding flexible polymers have been shown to hold for polymers under the influence of active fluctuations. In this Letter, we establish how the standard blob scaling theory representation of a polymer, capable of capturing the essential physics of passive polymers under a variety of settings, breaks down when dealing with active polymers under confinement. Using numerical simulations, we show how the predicted exponents associated to the forces applied by a polymer when restricted within cavities of different geometries hold only whenever the persistence length generated on the polymer by the active forces is much smaller than the size of the characteristic blob in the scaling theory.
Collapse
Affiliation(s)
- S Das
- Department of Chemistry, Columbia University 3000 Broadway, New York, New York 10027, USA
| | - A Cacciuto
- Department of Chemistry, Columbia University 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
40
|
Foglino M, Locatelli E, Brackley CA, Michieletto D, Likos CN, Marenduzzo D. Non-equilibrium effects of molecular motors on polymers. SOFT MATTER 2019; 15:5995-6005. [PMID: 31292585 DOI: 10.1039/c9sm00273a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a generic coarse-grained model to describe molecular motors acting on polymer substrates, mimicking, for example, RNA polymerase on DNA or kinesin on microtubules. The polymer is modeled as a connected chain of beads; motors are represented as freely diffusing beads which, upon encountering the substrate, bind to it through a short-ranged attractive potential. When bound, motors and polymer beads experience an equal and opposite active force, directed tangential to the polymer; this leads to motion of the motors along the polymer contour. The inclusion of explicit motors differentiates our model from other recent active polymer models. We study, by means of Langevin dynamics simulations, the effect of the motor activity on both the conformational and dynamical properties of the substrate. We find that activity leads, in addition to the expected enhancement of polymer diffusion, to an effective reduction of its persistence length. We discover that this effective "softening" is a consequence of the emergence of double-folded branches, or hairpins, and that it can be tuned by changing the number of motors or the force they generate. Finally, we investigate the effect of the motors on the probability of knot formation. Counter-intuitively our simulations reveal that, even though at equilibrium a more flexible substrate would show an increased knotting probability, motor activity leads to a marked decrease in the occurrence of knotted conformations with respect to equilibrium.
Collapse
Affiliation(s)
- M Foglino
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
| | | | | | | | | | | |
Collapse
|
41
|
Gradziuk G, Mura F, Broedersz CP. Scaling behavior of nonequilibrium measures in internally driven elastic assemblies. Phys Rev E 2019; 99:052406. [PMID: 31212437 DOI: 10.1103/physreve.99.052406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/07/2022]
Abstract
Detecting and quantifying nonequilibrium activity is essential for studying internally driven assemblies, including synthetic active matter and complex living systems such as cells or tissue. We discuss a noninvasive approach of measuring nonequilibrium behavior based on the breaking of detailed balance. We focus on "cycling frequencies"-the average frequency with which the trajectories of pairs of degrees of freedom revolve in phase space-and explain their connection with other nonequilibrium measures, including the area enclosing rate and the entropy production rate. We test our approach on simple toy models composed of elastic networks immersed in a viscous fluid with site-dependent internal driving. We prove both numerically and analytically that the cycling frequencies obey a power law as a function of distance between the tracked degrees of freedom. Importantly, the behavior of the cycling frequencies contains information about the dimensionality of the system and the amplitude of active noise. The mapping we use in our analytical approach thus offers a convenient framework for predicting the behavior of two-point nonequilibrium measures for a given activity distribution in the network.
Collapse
Affiliation(s)
- Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| |
Collapse
|
42
|
Shan WJ, Zhang F, Tian WD, Chen K. Assembly structures and dynamics of active colloidal cells. SOFT MATTER 2019; 15:4761-4770. [PMID: 31150037 DOI: 10.1039/c9sm00619b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many types of active matter are deformable, such as epithelial cells and bacteria. To mimic the feature of deformability, we built a model called an active colloidal cell (ACC), i.e. a vesicle enclosed with self-propelled particles (SPPs), which as a whole can move actively. Based on the model, we then study the role of deformability in the assembly structures and dynamics of ACCs by Langevin dynamics simulation. We find that deformability weakens the self-trapping effect and hence suppresses the clustering and phase separation of the deformable soft ACCs (sACCs). Instead of forming a large compact cluster like ordinary SPPs, sACCs pack into a loose network or porous structure in the phase-separation region. The condensed phase is liquid-like, in which sACCs are strongly compressed and deformed but still keep high motility. The interface between the gas and the condensed phases is blurry and unstable, and the effective interfacial energy is very low. Our work gives new insights into the role of deformability in the assembly of active matter and also provides a reference for further studies on different types of deformable active matter.
Collapse
Affiliation(s)
- Wen-Jie Shan
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | |
Collapse
|
43
|
Crowding-Activity Coupling Effect on Conformational Change of a Semi-Flexible Polymer. Polymers (Basel) 2019; 11:polym11061021. [PMID: 31185626 PMCID: PMC6631676 DOI: 10.3390/polym11061021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 11/17/2022] Open
Abstract
The behavior of a polymer in a passive crowded medium or in a very dilute active bath has been well studied, while a polymer immersed in an environment featured by both crowding and activity remains an open problem. In this paper, a systematic Langevin simulation is performed to investigate the conformational change of a semi-flexible chain in a concentrated solution packed with spherical active crowders. A very novel shrinkage-to-swelling transition is observed for a polymer with small rigidity. The underlying phase diagram is constructed in the parameter space of active force and crowder size. Moreover, the variation of the polymer gyration radius demonstrates a non-monotonic dependence on the dynamical persistence length of the active particle. Lastly, the activity-crowding coupling effect in different crowder size baths is clarified. In the case of small crowders, activity strengthens the crowding-induced shrinkage to the chain. As crowder size increases, activity turns out to be a contrasting factor to crowding, resulting in a competitive shrinkage and swelling. In the large size situation, the swelling effect arising from activity eventually becomes dominant. The present study provides a deeper understanding of the unusual behavior of a semi-flexible polymer in an active and crowded medium, associated with the nontrivial activity-crowding coupling and the cooperative crowder size effect.
Collapse
|
44
|
Martín-Gómez A, Eisenstecken T, Gompper G, Winkler RG. Active Brownian filaments with hydrodynamic interactions: conformations and dynamics. SOFT MATTER 2019; 15:3957-3969. [PMID: 31012481 DOI: 10.1039/c9sm00391f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The conformational and dynamical properties of active self-propelled filaments/polymers are investigated in the presence of hydrodynamic interactions by both, Brownian dynamics simulations and analytical theory. Numerically, a discrete linear chain composed of active Brownian particles is considered, analytically, a continuous linear semiflexible polymer with active velocities changing diffusively. The force-free nature of active monomers is accounted for-no Stokeslet fluid flow induced by active forces-and higher order hydrodynamic multipole moments are neglected. Hence, fluid-mediated interactions are assumed to arise solely due to intramolecular forces. The hydrodynamic interactions (HI) are taken into account analytically by the preaveraged Oseen tensor, and numerically by the Rotne-Prager-Yamakawa tensor. The nonequilibrium character of the active process implies a dependence of the stationary-state properties on HI via the polymer relaxation times. In particular, at moderate activities, HI lead to a substantial shrinkage of flexible and semiflexible polymers to an extent far beyond shrinkage of comparable free-draining polymers; even flexible HI-polymers shrink, while active free-draining polymers swell monotonically. Large activities imply a reswelling, however, to a less extent than for non-HI polymers, caused by the shorter polymer relaxation times due to hydrodynamic interactions. The polymer mean square displacement is enhanced, and an activity-determined ballistic regime appears. Over a wide range of time scales, flexible active polymers exhibit a hydrodynamically governed subdiffusive regime, with an exponent significantly smaller than that of the Rouse and Zimm models of passive polymers. Compared to simulations, the analytical approach predicts a weaker hydrodynamic effect. Overall, hydrodynamic interactions modify the conformational and dynamical properties of active polymers substantially.
Collapse
Affiliation(s)
- Aitor Martín-Gómez
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|
45
|
Xia YQ, Shen ZL, Tian WD, Chen K. Unfolding of a diblock chain and its anomalous diffusion induced by active particles. J Chem Phys 2019; 150:154903. [PMID: 31005072 DOI: 10.1063/1.5095850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We study the structural and dynamical behavior of an A-B diblock chain in the bath of active Brownian particles (ABPs) by Brownian dynamics simulations in two dimensions. We are interested in the situation that the effective interaction between the A segments is attractive, while that between the B segments is repulsive. Therefore, in thermal (nonactive) equilibrium, the A block "folds" into a compact globule, while the B block is in the expanded coil state. Interestingly, we find that the A block could "unfold" sequentially like unknitting a sweater, driven by the surrounding ABPs when the propelling strength on them is beyond a certain value. This threshold value decreases and then levels off as the length of the B block increases. We also find a simple power-law relation between the unfolding time of the A block and the self-propelling strength and an exponential relation between the unfolding time and the length of the B block. Finally, we probe the translational and rotational diffusion of the chain and find that both of them show "super-diffusivity" in a large time window, especially when the self-propelling strength is small and the A block is in the folded state. Such super-diffusivity is due to the strong asymmetric distribution of ABPs around the chain. Our work provides new insights into the behavior of a polymer chain in the environment of active objects.
Collapse
Affiliation(s)
- Yi-Qi Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhuang-Lin Shen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
46
|
Chaki S, Chakrabarti R. Enhanced diffusion, swelling, and slow reconfiguration of a single chain in non-Gaussian active bath. J Chem Phys 2019; 150:094902. [DOI: 10.1063/1.5086152] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Subhasish Chaki
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
47
|
Du Y, Jiang H, Hou Z. Study of active Brownian particle diffusion in polymer solutions. SOFT MATTER 2019; 15:2020-2031. [PMID: 30724318 DOI: 10.1039/c8sm02292e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The diffusion behavior of an active Brownian particle (ABP) in polymer solutions is studied using Langevin dynamics simulations. We find that the long time diffusion coefficient D can show a non-monotonic dependence on the particle size R if the active force Fa is large enough, wherein a bigger particle would diffuse faster than a smaller one which is quite counterintuitive. By analyzing the short time dynamics in comparison to the passive one, we find that such non-trivial dependence results from the competition between persistent motion of the ABP and the length-scale dependent effective viscosity that the particle experiences in the polymer solution. We have also introduced an effective viscosity ηeff experienced by the ABP phenomenologically. Such an active ηeff is found to be larger than a passive one and strongly depends on R and Fa. In addition, we find that the dependence of D on propelling force Fa presents a good power-law scaling at a fixed R and the scaling factor changes non-monotonically with R. Such results demonstrate that the active process plays rather subtle roles in the diffusion of nano-particles in complex solutions.
Collapse
Affiliation(s)
- Yunfei Du
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | |
Collapse
|
48
|
Angelani L. Spontaneous assembly of colloidal vesicles driven by active swimmers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:075101. [PMID: 30523954 DOI: 10.1088/1361-648x/aaf516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We explore the self-assembly process of colloidal structures immersed in active baths. By considering low-valence particles we numerically investigate the irreversible aggregation dynamics originated by the presence of run-and-tumble swimmers. We observe the formation of long closed chains-vesicles-densely filled by active swimmers. On the one hand the active bath drives the self-assembly of closed colloidal structures, and on the other hand the vesicles formation fosters the self-trapping of swimmers, suggesting new ways both to build structured nanomaterials and to trap microorganisms.
Collapse
Affiliation(s)
- Luca Angelani
- ISC-CNR, Institute for Complex Systems, and Dipartimento di Fisica, Università Sapienza, Piazzale Aldo Moro 2, I-00185 Rome, Italy
| |
Collapse
|
49
|
Affiliation(s)
- S. Mahdiyeh Mousavi
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G. Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
50
|
Yuan C, Chen A, Zhang B, Zhao N. Activity–crowding coupling effect on the diffusion dynamics of a self-propelled particle in polymer solutions. Phys Chem Chem Phys 2019; 21:24112-24125. [DOI: 10.1039/c9cp04498a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The anomalous diffusion dynamics of an active particle in polymer solutions is studied based on a Langevin Brownian dynamics simulation.
Collapse
Affiliation(s)
- Chengli Yuan
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Anpu Chen
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Bingjie Zhang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Nanrong Zhao
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|