1
|
Davis D, Sen Gupta B. Kinetics of vapor-liquid and vapor-solid phase separation under gravity. SOFT MATTER 2025; 21:1012-1023. [PMID: 39807936 DOI: 10.1039/d4sm01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We study the kinetics of vapor-liquid and vapor-solid phase separation of a hydrodynamics preserving three-dimensional one-component Lennard Jones system in the presence of an external gravitational field using extensive molecular dynamic simulation. A bicontinuous domain structure is formed when the homogeneous system near the critical density is quenched inside the coexistence region. In the absence of gravity, the domain morphology is statistically self-similar and the length scale grows as per the existing laws. However, the presence of gravity destroys the isotropy of the system and affects the scaling laws. We observe an accelerated domain growth in the direction of the field which resembles a sedimentation process. Consequently, a new length scale emerges which strongly depends on the field strength. Similar behavior is observed in the direction perpendicular to the applied field, with a different growth rate. Finally, the statistical self-similarity of the domain growth and the Porod law in such anisotropic systems is verified in terms of two-point equal time order parameter correlation function and static structure factor.
Collapse
Affiliation(s)
- Daniya Davis
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Bhattacharyya R, Sen Gupta B. Kinetics of phase separation and aging dynamics of segregating fluid mixtures in the presence of quenched disorder. SOFT MATTER 2024; 20:2969-2977. [PMID: 38470361 DOI: 10.1039/d4sm00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Quenched or frozen-in structural disorder is ubiquitous in real experimental systems. Much of the progress is achieved in understanding the phase separation of such systems using the diffusion-driven coarsening in an Ising model with quenched disorder. But there is a paucity of research on the phase-separation kinetics in fluids with quenched disorder. In this paper, we present results from a detailed molecular dynamics simulation, showing the effects of randomly placed localized impurities on the phase separation kinetics of binary fluid mixtures. Two different models are offered for representing the impurities. We observe a dramatic slowing down in the pattern formation with increasing impurity concentration. This sluggish domain growth kinetics follows a power-law with a disorder-dependent exponent. The correlation function and structure factor show a non-Porod behavior, indicating the roughening of the domain interfaces. We have also studied the effect of quenched disorder on the aging dynamics by calculating the two-time order parameter auto correlation function and find that the Fisher and Huse scaling law holds good in the presence of quenched disorder.
Collapse
Affiliation(s)
- Rounak Bhattacharyya
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg 69120, Germany
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
3
|
Zhao DY, Ding B, Zhu CY, Gong L, Duan F. Effects of Inorganic Salts on the Phase Separation of Partially Miscible Solutes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5818-5827. [PMID: 38447182 DOI: 10.1021/acs.langmuir.3c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Partially miscible solutions with a lower critical solution temperature have promising applications in the field of physical chemistry. To better guide the utilization of these solutions in practice, we conduct an in-depth study about the phase separation behavior of the solution added with inorganic salts. The addition of the inorganic salts into the solution is found to consequently reduce the phase separation temperature. The variation of concentrations of inorganic salts does not notably affect the mass fraction of the separation. Moreover, the addition of inorganic salts in the solutions at lower mass fractions improves the separation mass fraction, while the addition of inorganic salts decreases the separation mass fraction at the mass fractions above 30%. It sheds light on selecting the proper mass fractions and inorganic salt concentrations. Furthermore, we explore the phase separation behavior of mixed solutions under different inorganic salt additions by means of a high-speed camera. The phase separation behavior under different inorganic salt systems shows a similar trend. However, calcium ions and Fe3+ ions in the solutions can greatly decrease the rate of droplet coalescence and result in an increase in phase separation. For better regulating the solutions with a lower critical solution temperature through inorganic salts, sodium chloride or potassium chloride is recommended with an appropriate concentration.
Collapse
Affiliation(s)
- Dong-Yu Zhao
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Bin Ding
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Chuan-Yong Zhu
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Liang Gong
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Fei Duan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nan yang Avenue, Singapore 639798, Singapore
| |
Collapse
|
4
|
Davis D, Gupta BS. Surface-directed spinodal decomposition of fluids confined in a cylindrical pore. Phys Rev E 2023; 108:064607. [PMID: 38243488 DOI: 10.1103/physreve.108.064607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
The surface-directed spinodal decomposition of a binary liquid confined inside a cylindrical pore is investigated using molecular dynamics simulations. One component of the liquid wets the pore surface while the other remains neutral. A variety of wetting conditions are studied. For the partial wetting case, after an initial period of phase separation, the domains organize themselves into pluglike structures and the system enters into a metastable state. Therefore, a complete phase separation is never achieved. Analysis of domain growth and the structure factor suggests a one-dimensional growth dynamics for the partial wetting case. As the wetting interaction is increased beyond a critical value, a transition from the pluglike to tubelike domain formation is observed, which corresponds to the full wetting morphology. Thus, a complete phase separation is achieved as the wetting species moves towards the pore surface and forms layers enclosing the nonwetting species residing around the axis of the cylinder. The coarsening dynamics of both the species are studied separately. The wetting species is found to follow a two-dimensional domain growth dynamics with a growth exponent 1/2 in the viscous hydrodynamic regime. This was substantiated by the Porod tail of the structure factor. On the other hand, the domain grows linearly with time for the nonwetting species. This suggests that the nonwetting species behaves akin to a three-dimensional bulk system. An appropriate reasoning is presented to justify the given observations.
Collapse
Affiliation(s)
- Daniya Davis
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
5
|
Das K, Das SK. Hydrodynamic effects in kinetics of phase separation in binary fluids: Critical versus off-critical compositions. Phys Rev E 2023; 107:044116. [PMID: 37198773 DOI: 10.1103/physreve.107.044116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Via hydrodynamics-preserving molecular dynamics simulations we study growth phenomena in a phase-separating symmetric binary mixture model. We quench high-temperature homogeneous configurations to state points inside the miscibility gap, for various mixture compositions. For compositions at the symmetric or critical value we capture the rapid linear viscous hydrodynamic growth due to advective transport of material through tubelike interconnected domains. For state points very close to any of the branches of the coexistence curve, the growth in the system, following nucleation of disconnected droplets of the minority species, occurs via a coalescence mechanism. Using state-of-the-art techniques, we have identified that these droplets, between collisions, exhibit diffusive motion. The value of the exponent for the power-law growth, related to this diffusive coalescence mechanism, has been estimated. While the exponent nicely agrees with that for the growth via the well-known Lifshitz-Slyozov particle diffusion mechanism, the amplitude is stronger. For the intermediate compositions we observe initial rapid growth that matches the expectations for viscous or inertial hydrodynamic pictures. However, at later times these types of growth cross over to the exponent that is decided by the diffusive coalescence mechanism.
Collapse
Affiliation(s)
- Koyel Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
6
|
Zhang M, Díaz-Celis C, Onoa B, Cañari-Chumpitaz C, Requejo KI, Liu J, Vien M, Nogales E, Ren G, Bustamante C. Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography. Mol Cell 2022; 82:3000-3014.e9. [PMID: 35907400 DOI: 10.1016/j.molcel.2022.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022]
Abstract
It has been proposed that the intrinsic property of nucleosome arrays to undergo liquid-liquid phase separation (LLPS) in vitro is responsible for chromatin domain organization in vivo. However, understanding nucleosomal LLPS has been hindered by the challenge to characterize the structure of the resulting heterogeneous condensates. We used cryo-electron tomography and deep-learning-based 3D reconstruction/segmentation to determine the molecular organization of condensates at various stages of LLPS. We show that nucleosomal LLPS involves a two-step process: a spinodal decomposition process yielding irregular condensates, followed by their unfavorable conversion into more compact, spherical nuclei that grow into larger spherical aggregates through accretion of spinodal materials or by fusion with other spherical condensates. Histone H1 catalyzes more than 10-fold the spinodal-to-spherical conversion. We propose that this transition involves exposure of nucleosome hydrophobic surfaces causing modified inter-nucleosome interactions. These results suggest a physical mechanism by which chromatin may transition from interphase to metaphase structures.
Collapse
Affiliation(s)
- Meng Zhang
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - César Díaz-Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | | | - Katherinne I Requejo
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Vien
- Department of Physics, University of California, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos Bustamante
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, CA, USA; Department of Physics, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
Carmona P, Röding M, Särkkä A, von Corswant C, Olsson E, Lorén N. Structure formation and coarsening kinetics of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films. SOFT MATTER 2022; 18:3206-3217. [PMID: 35383800 DOI: 10.1039/d2sm00113f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport from pharmaceutical pellets. The drug transport rate is determined by the structure of the porous films that are formed as water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure in the films is lacking. In this work, we have investigated EC/HPC films produced by spin-coating, mimicking the industrial fluidized bed spraying. The aim was to investigate film structure evolution and coarsening kinetics during solvent evaporation. The structure evolution was characterized using confocal laser scanning microscopy and image analysis. The effect of the EC:HPC ratio (15 to 85 wt% HPC) on the structure evolution was determined. Bicontinuous structures were found for 30 to 40 wt% HPC. The growth of the characteristic length scale followed a power law, L(t) ∼ t(n), with n ∼ 1 for bicontinuous structures, and n ∼ 0.45-0.75 for discontinuous structures. The characteristic length scale after kinetic trapping ranged between 3.0 and 6.0 μm for bicontinuous and between 0.6 and 1.6 μm for discontinuous structures. Two main coarsening mechanisms could be identified: interfacial tension-driven hydrodynamic growth for bicontinuous structures and diffusion-driven coalescence for discontinuous structures. The 2D in-plane interface curvature analysis showed that the mean curvature decreased as a function of time for bicontinuous structures, confirming that interfacial tension is driving the growth. The findings of this work provide a good understanding of the mechanisms responsible for morphology development and open for further tailoring of thin EC/HPC film structures for controlled drug release.
Collapse
Affiliation(s)
- Pierre Carmona
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Röding
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Eva Olsson
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Lorén
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
Bhattacharyya R, Gupta BS. Effect of annealed disorder on phase separation kinetics and aging phenomena in fluid mixtures. Phys Rev E 2021; 104:054612. [PMID: 34942791 DOI: 10.1103/physreve.104.054612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 11/07/2022]
Abstract
We use state-of-the-art molecular dynamics simulations to study the effects of annealed disorder on the phase-separating kinetics and aging phenomena of a segregating binary fluid mixture. In the presence of disorder, we observe a dramatic slowing down in the phase separation dynamics. The domain growth follows the power law with a disorder-dependent exponent. Due to the energetically favorable positions, the domain boundary roughens, which modifies the correlation function and structure factor to a non-Porod behavior. The correlation function and structure factor provide clear evidence that superuniversality does not hold in our system. The role of annealed disorder on the nonequilibrium aging dynamics is studied qualitatively by computing the two-time order-parameter autocorrelation function. The decay of the correlation function slows down significantly with the disorder. This quantity exhibits scaling laws with respect to the ratio of the domain length at the observation time and the age of the system. We find the scaling laws hold good for the disordered system and are therefore robust and generic to such segregating fluid mixtures.
Collapse
Affiliation(s)
- Rounak Bhattacharyya
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
Fan X, Diamond PH, Chacón L. Formation and evolution of target patterns in Cahn-Hilliard flows. Phys Rev E 2018; 96:041101. [PMID: 29347565 DOI: 10.1103/physreve.96.041101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Indexed: 11/07/2022]
Abstract
We study the evolution of the concentration field in a single eddy in the two-dimensional (2D) Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D magnetohydrodynamics and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a "jelly roll" pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the isoconcentration bands align with stream lines. The results indicate that the target pattern is a metastable state. The band merger process continues on a time scale exponentially long relative to the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases; this is characteristic of the long-time evolution of phase-separated patterns described by the Cahn-Hilliard equation.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
| | - P H Diamond
- Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
| | - L Chacón
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Gidituri H, Anand DV, Vedantam S, Panchagnula MV. Dissipative particle dynamics study of phase separation in binary fluid mixtures in periodic and confined domains. J Chem Phys 2017; 147:074703. [PMID: 28830165 DOI: 10.1063/1.4999096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate the phase separation behavior of binary mixtures in two-dimensional periodic and confined domains using dissipative particle dynamics. Two canonical problems of fluid mechanics are considered for the confined domains: square cavity with no-slip walls and lid-driven cavity with one driven wall. The dynamics is studied for both weakly and strongly separating mixtures and different area fractions. The phase separation process is analyzed using the structure factor and the total interface length. The dynamics of phase separation in the square cavity and lid-driven cavity are observed to be significantly slower when compared to the dynamics in the periodic domain. The presence of the no-slip walls and the inertial effects significantly influences the separation dynamics. Finally, we show that the growth exponent for the strongly separating case is invariant to changes in the inter-species repulsion parameter.
Collapse
Affiliation(s)
- Harinadha Gidituri
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - D Vijay Anand
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srikanth Vedantam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahesh V Panchagnula
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
11
|
Midya J, Das SK. Droplet growth during vapor-liquid transition in a 2D Lennard-Jones fluid. J Chem Phys 2017; 146:024503. [PMID: 28088133 DOI: 10.1063/1.4973617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Results for the kinetics of vapor-liquid phase transition have been presented from the molecular dynamics simulations of a single component two-dimensional Lennard-Jones fluid. The phase diagram for the model, primary prerequisite for this purpose, has been obtained via the Monte Carlo simulations. Our focus is on the region very close to the vapor branch of the coexistence curve. Quenches to such region provide morphology that consists of disconnected circular clusters in the vapor background. We identified that these clusters exhibit diffusive motion and grow via sticky collisions among them. The growth follows power-law behavior with time, exponent of which is found to be in nice agreement with a theoretical prediction.
Collapse
Affiliation(s)
- Jiarul Midya
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
12
|
Pütz M, Nielaba P. Insights from inside the spinodal: Bridging thermalization time scales with smoothed particle hydrodynamics. Phys Rev E 2016; 94:022616. [PMID: 27627369 DOI: 10.1103/physreve.94.022616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 11/07/2022]
Abstract
We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen thermostat. It controls the strength of heat bath coupling and allows for quenches with exponential temperature decay at a certain thermalization time scale. The present method allows us to bridge several orders of magnitude in the thermalization time scale. The early stage is highly affected by the choice of time scale. A transition from exponential growth to a 1/2 ordinary power law scaling in the characteristic lengths is observed. At high initial temperatures the growth is logarithmic. The comparison with pure thermal simulations reveals latent heat to raise the mean system temperature. Large thermalization time scales and thermal conductivity are figured out to affect a stagnation of heating, which is explained with convective processes. Furthermore, large thermalization time scales are responsible for a stagnation of growth of domains, which is temporally embedded between early and late stage of phase separation. Therefore, it is considered as an intermediate stage. We present an aspect concerning this stage, namely that choosing larger thermalization time scales increases the duration. Moreover, it is observed that diffuse interfaces are formed during this stage, provided that the stage is apparent. We show that the differences in the evolution between pure thermal simulations and simulations with an instantaneously scaled mean temperature can be explained by the thermalization process, since a variation of the time scale allows for the bridging between these cases of limit.
Collapse
Affiliation(s)
- Martin Pütz
- Universität Konstanz, Fachbereich für Physik, 78457 Konstanz, Germany
| | - Peter Nielaba
- Universität Konstanz, Fachbereich für Physik, 78457 Konstanz, Germany
| |
Collapse
|