1
|
Aslyamov T, Ptaszyński K, Esposito M. Nonequilibrium Fluctuation-Response Relations: From Identities to Bounds. PHYSICAL REVIEW LETTERS 2025; 134:157101. [PMID: 40315487 DOI: 10.1103/physrevlett.134.157101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 05/04/2025]
Abstract
In nonequilibrium steady states of Markov jump processes, we derive exact fluctuation-response relations (FRRs) that express the covariance between any pair of currents in terms of static responses in a notably simple form, thus generalizing the fluctuation-dissipation theorem far from equilibrium. We begin by considering perturbations in the symmetric part of the rates. We demonstrate that FRRs imply a hierarchy of thermodynamic bounds. These hierarchies prove the recently conjectured response thermodynamic uncertainty relation, which bounds the ratio between any current's response and its variance by the entropy production rate (EPR). We furthermore strengthen this bound in two distinct ways, using a partial EPR in one case and a pseudo-EPR in the other. For perturbations in the antisymmetric part of the rates, we show that the ratio between any current's response and its variance is bounded by traffic, a metric representing the total number of transitions per unit time in the system. As an application, we use FRRs to explain the origin of positive correlations between currents in Coulomb-blockaded systems previously observed in experiments.
Collapse
Affiliation(s)
- Timur Aslyamov
- University of Luxembourg, Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, 30 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Krzysztof Ptaszyński
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Massimiliano Esposito
- University of Luxembourg, Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, 30 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Prech K, Potts PP. Quantum Fluctuation Theorem for Arbitrary Measurement and Feedback Schemes. PHYSICAL REVIEW LETTERS 2024; 133:140401. [PMID: 39423400 DOI: 10.1103/physrevlett.133.140401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
Fluctuation theorems and the second law of thermodynamics are powerful relations constraining the behavior of out-of-equilibrium systems. While there exist generalizations of these relations to feedback controlled quantum systems, their applicability is limited, in particular when considering strong and continuous measurements. In this Letter, we overcome this shortcoming by deriving a novel fluctuation theorem, and the associated second law of information thermodynamics, which remain applicable in arbitrary feedback control scenarios. In our second law, the entropy production is bounded by the coarse-grained entropy production that is inferrable from the measurement outcomes, an experimentally accessible quantity that does not diverge even under strong continuous measurements. We illustrate our results by a qubit undergoing discrete and continuous measurement, where our approach provides a useful bound on the entropy production for all measurement strengths.
Collapse
|
3
|
Degünther J, van der Meer J, Seifert U. General theory for localizing the where and when of entropy production meets single-molecule experiments. Proc Natl Acad Sci U S A 2024; 121:e2405371121. [PMID: 39121164 PMCID: PMC11331124 DOI: 10.1073/pnas.2405371121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
The laws of thermodynamics apply to biophysical systems on the nanoscale as described by the framework of stochastic thermodynamics. This theory provides universal, exact relations for quantities like work, which have been verified in experiments where a fully resolved description allows direct access to such quantities. Complementary studies consider partially hidden, coarse-grained descriptions, in which the mean entropy production typically is not directly accessible but can be bounded in terms of observable quantities. Going beyond the mean, we introduce a fluctuating entropy production that applies to individual trajectories in a coarse-grained description under time-dependent driving. Thus, this concept is applicable to the broad and experimentally significant class of driven systems in which not all relevant states can be resolved. We provide a paradigmatic example by studying an experimentally verified protein unfolding process. As a consequence, the entire distribution of the coarse-grained entropy production rather than merely its mean retains spatial and temporal information about the microscopic process. In particular, we obtain a bound on the distribution of the physical entropy production of individual unfolding events.
Collapse
Affiliation(s)
- Julius Degünther
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart70550, Germany
| | - Jann van der Meer
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart70550, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart70550, Germany
| |
Collapse
|
4
|
Harunari PE. Uncovering nonequilibrium from unresolved events. Phys Rev E 2024; 110:024122. [PMID: 39294962 DOI: 10.1103/physreve.110.024122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024]
Abstract
Closely related to the laws of thermodynamics, the detection and quantification of disequilibria are crucial in unraveling the complexities of nature, particularly those beneath observable layers. Theoretical developments in nonequilibrium thermodynamics employ coarse-graining methods to consider a diversity of partial information scenarios that mimic experimental limitations, allowing the inference of properties such as the entropy production rate. A ubiquitous but rather unexplored scenario involves observing events that can possibly arise from many transitions in the underlying Markov process-which we dub multifilar events-as in the cases of exchanges measured at particle reservoirs, hidden Markov models, mixed chemical and mechanical transformations in biological function, composite systems, and more. We relax one of the main assumptions in a previously developed framework, based on first-passage problems, to assess the non-Markovian statistics of multifilar events. By using the asymmetry of event distributions and their waiting times, we put forward model-free tools to detect nonequilibrium behavior and estimate entropy production, while discussing their suitability for different classes of systems and regimes where they provide no new information, evidence of nonequilibrium, a lower bound for entropy production, or even its exact value. The results are illustrated in reference models through analytics and numerics.
Collapse
|
5
|
Ertel B, Seifert U. Estimator of entropy production for partially accessible Markov networks based on the observation of blurred transitions. Phys Rev E 2024; 109:054109. [PMID: 38907510 DOI: 10.1103/physreve.109.054109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 06/24/2024]
Abstract
A central task in stochastic thermodynamics is the estimation of entropy production for partially accessible Markov networks. We establish an effective transition-based description for such networks with transitions that are not distinguishable and therefore blurred for an external observer. We demonstrate that, in contrast to a description based on fully resolved transitions, this effective description is typically non-Markovian at any point in time. Starting from an information-theoretic bound, we derive an operationally accessible entropy estimator for this observation scenario. We illustrate the operational relevance and the quality of this entropy estimator with a numerical analysis of various representative examples.
Collapse
Affiliation(s)
- Benjamin Ertel
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
6
|
Moslonka C, Sekimoto K. Interplay between Markovianity and progressive quenching. Phys Rev E 2024; 109:034106. [PMID: 38632766 DOI: 10.1103/physreve.109.034106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/03/2024] [Indexed: 04/19/2024]
Abstract
Progressive quenching (PQ) is a process in which we sequentially fix a system's degrees of freedom, which would otherwise evolve according to their stochastic dynamics. Previous studies have discovered what we refer to as the hidden martingale property in PQ. Here we first attribute this martingale property to the canonicity of the two-layer ensemble comprising quenched and thermal ensembles and demonstrate that the Markovian property, coupled with the detailed balance (DB) of the evolution dynamics, underpins this canonicity. We then expand the PQ to the Markovian dynamics on the transition network where the DB is not required. Additionally, we examine the PQ of the systems that evolve through non-Markovian dynamics between consecutive quenching. When non-Markovian dynamics ensure a trajectory-wise DB, such as in an equilibrium spin system with a hidden part, the PQ can occasionally maintain the canonical structure of the overall statistical ensemble but not always. Last, we analytically and numerically investigate the PQ of a non-Markovian spin system with delayed interaction and illustrate how the reduction of spin correlations due to the delay can be compensated by the PQ.
Collapse
Affiliation(s)
- Charles Moslonka
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, 75005, Paris, France
| | - Ken Sekimoto
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, 75005, Paris, France
- Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Cité, 75013, Paris, France
| |
Collapse
|
7
|
Shiraishi N. Entropy production limits all fluctuation oscillations. Phys Rev E 2023; 108:L042103. [PMID: 37978716 DOI: 10.1103/physreve.108.l042103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
The oscillation of fluctuation with two state observables is investigated. Following the idea of Ohga et al. [Phys. Rev. Lett. 131, 077101 (2023)10.1103/PhysRevLett.131.077101], we find that the fluctuation oscillation relative to their autocorrelations is bounded from above by the entropy production per characteristic maximum oscillation time. Our result applies to a variety of systems including Langevin systems, chemical reaction systems, and macroscopic systems. In addition, our bound consists of experimentally tractable quantities, which enables us to examine our inequality experimentally.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Faculty of arts and sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
8
|
van der Meer J, Degünther J, Seifert U. Time-Resolved Statistics of Snippets as General Framework for Model-Free Entropy Estimators. PHYSICAL REVIEW LETTERS 2023; 130:257101. [PMID: 37418719 DOI: 10.1103/physrevlett.130.257101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Irreversibility is commonly quantified by entropy production. An external observer can estimate it through measuring an observable that is antisymmetric under time reversal like a current. We introduce a general framework that allows us to infer a lower bound on entropy production through measuring the time-resolved statistics of events with any symmetry under time reversal, in particular, time-symmetric instantaneous events. We emphasize Markovianity as a property of certain events rather than of the full system and introduce an operationally accessible criterion for this weakened Markov property. Conceptually, the approach is based on snippets as particular sections of trajectories between two Markovian events, for which a generalized detailed balance relation is discussed.
Collapse
Affiliation(s)
- Jann van der Meer
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Julius Degünther
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
9
|
Ghosal A, Bisker G. Inferring entropy production rate from partially observed Langevin dynamics under coarse-graining. Phys Chem Chem Phys 2022; 24:24021-24031. [PMID: 36065766 PMCID: PMC7613705 DOI: 10.1039/d2cp03064k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The entropy production rate (EPR) measures time-irreversibility in systems operating far from equilibrium. The challenge in estimating the EPR for a continuous variable system is the finite spatiotemporal resolution and the limited accessibility to all of the nonequilibrium degrees of freedom. Here, we estimate the irreversibility in partially observed systems following oscillatory dynamics governed by coupled overdamped Langevin equations. We coarse-grain an observed variable of a nonequilibrium driven system into a few discrete states and estimate a lower bound on the total EPR. As a model system, we use hair-cell bundle oscillations driven by molecular motors, such that the bundle tip position is observed, but the positions of the motors are hidden. In the observed variable space, the underlying driven process exhibits second-order semi-Markov statistics. The waiting time distributions (WTD), associated with transitions among the coarse-grained states, are non-exponential and convey the information on the broken time-reversal symmetry. By invoking the underlying time-irreversibility, we calculate a lower bound on the total EPR from the Kullback-Leibler divergence (KLD) between WTD. We show that the mean dwell-time asymmetry factor - the ratio between the mean dwell-times along the forward direction and the backward direction, can qualitatively measure the degree of broken time reversal symmetry and increases with finer spatial resolution. Finally, we apply our methodology to a continuous-time discrete Markov chain model, coarse-grained into a linear system exhibiting second-order semi-Markovian statistics, and demonstrate the estimation of a lower bound on the total EPR from irreversibility manifested only in the WTD.
Collapse
Affiliation(s)
- Aishani Ghosal
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Gili Bisker
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Dechant A, Sasa SI, Ito S. Geometric decomposition of entropy production into excess, housekeeping, and coupling parts. Phys Rev E 2022; 106:024125. [PMID: 36109899 DOI: 10.1103/physreve.106.024125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
For a generic overdamped Langevin dynamics driven out of equilibrium by both time-dependent and nonconservative forces, the entropy production rate can be decomposed into two positive terms, termed excess and housekeeping entropy. However, this decomposition is not unique: There are two distinct decompositions, one due to Hatano and Sasa, the other one due to Maes and Netočný. Here we establish the connection between these two decompositions and provide a simple, geometric interpretation. We show that this leads to a decomposition of the entropy production rate into three positive terms, which we call the excess, housekeeping, and coupling part, respectively. The coupling part characterizes the interplay between the time-dependent and nonconservative forces. We also derive thermodynamic uncertainty relations for the excess and housekeeping entropy in both the Hatano-Sasa and Maes-Netočný decomposition and show that all quantities obey integral fluctuation theorems. We illustrate the decomposition into three terms using a solvable example of a dragged particle in a nonconservative force field.
Collapse
Affiliation(s)
- Andreas Dechant
- Department of Physics no. 1, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichi Sasa
- Department of Physics no. 1, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Sosuke Ito
- Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
- JST, PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Wolpert DH. Strengthened second law for multi-dimensional systems coupled to multiple thermodynamic reservoirs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200428. [PMID: 35599569 PMCID: PMC9125225 DOI: 10.1098/rsta.2020.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The second law of thermodynamics can be formulated as a restriction on the evolution of the entropy of any system undergoing Markovian dynamics. Here I show that this form of the second law is strengthened for multi-dimensional, complex systems, coupled to multiple thermodynamic reservoirs, if we have a set of a priori constraints restricting how the dynamics of each coordinate can depend on the other coordinates. As an example, this strengthened second law (SSL) applies to complex systems composed of multiple physically separated, co-evolving subsystems, each identified as a coordinate of the overall system. In this example, the constraints concern how the dynamics of some subsystems are allowed to depend on the states of the other subsystems. Importantly, the SSL applies to such complex systems even if some of its subsystems can change state simultaneously, which is prohibited in a multipartite process. The SSL also strengthens previously derived bounds on how much work can be extracted from a system using feedback control, if the system is multi-dimensional. Importantly, the SSL does not require local detailed balance. So it potentially applies to complex systems ranging from interacting economic agents to co-evolving biological species. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- David H. Wolpert
- Santa Fe Institute, Santa Fe, NM, USA
- Complexity Science Hub, Vienna, Arizona State University, Tempe, AZ, USA
- International Center for Theoretical Physics, Italy
| |
Collapse
|
12
|
Wolpert DH. Strengthened second law for multi-dimensional systems coupled to multiple thermodynamic reservoirs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022. [PMID: 35599569 DOI: 10.6084/m9.figshare.c.5896494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The second law of thermodynamics can be formulated as a restriction on the evolution of the entropy of any system undergoing Markovian dynamics. Here I show that this form of the second law is strengthened for multi-dimensional, complex systems, coupled to multiple thermodynamic reservoirs, if we have a set of a priori constraints restricting how the dynamics of each coordinate can depend on the other coordinates. As an example, this strengthened second law (SSL) applies to complex systems composed of multiple physically separated, co-evolving subsystems, each identified as a coordinate of the overall system. In this example, the constraints concern how the dynamics of some subsystems are allowed to depend on the states of the other subsystems. Importantly, the SSL applies to such complex systems even if some of its subsystems can change state simultaneously, which is prohibited in a multipartite process. The SSL also strengthens previously derived bounds on how much work can be extracted from a system using feedback control, if the system is multi-dimensional. Importantly, the SSL does not require local detailed balance. So it potentially applies to complex systems ranging from interacting economic agents to co-evolving biological species. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- David H Wolpert
- Santa Fe Institute, Santa Fe, NM, USA
- Complexity Science Hub, Vienna, Arizona State University, Tempe, AZ, USA
- International Center for Theoretical Physics, Italy
| |
Collapse
|
13
|
Shiraishi N. Time-Symmetric Current and Its Fluctuation Response Relation around Nonequilibrium Stalling Stationary State. PHYSICAL REVIEW LETTERS 2022; 129:020602. [PMID: 35867465 DOI: 10.1103/physrevlett.129.020602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
We propose a time-symmetric counterpart of the current in stochastic thermodynamics named the time-symmetric current. This quantity is defined with empirical measures and thus is symmetric under time reversal, while its ensemble average reproduces the amount of the average current. We prove that this time-symmetric current satisfies the fluctuation-response relation in the conventional form but with sign inversion. Remarkably, this fluctuation-response relation holds not only around equilibrium states but also around nonequilibrium stationary states if observed currents stall. The obtained relation also serves as an experimental tool for probing the value of a bare transition rate by measuring only time-integrated empirical measures.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
14
|
Yada T, Yoshioka N, Sagawa T. Quantum Fluctuation Theorem under Quantum Jumps with Continuous Measurement and Feedback. PHYSICAL REVIEW LETTERS 2022; 128:170601. [PMID: 35570443 DOI: 10.1103/physrevlett.128.170601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
While the fluctuation theorem in classical systems has been thoroughly generalized under various feedback control setups, an intriguing situation in quantum systems, namely under continuous feedback, remains to be investigated. In this work, we derive the generalized fluctuation theorem under quantum jumps with continuous measurement and feedback. The essence for the derivation is to newly introduce the operationally meaningful information, which we call quantum-classical-transfer (QC-transfer) entropy. QC-transfer entropy can be naturally interpreted as the quantum counterpart of transfer entropy that is commonly used in classical time series analysis. We also verify our theoretical results by numerical simulation and propose an experiment-numerics hybrid verification method. Our work reveals a fundamental connection between quantum thermodynamics and quantum information, which can be experimentally tested with artificial quantum systems such as circuit quantum electrodynamics.
Collapse
Affiliation(s)
- Toshihiro Yada
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuyuki Yoshioka
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
McClure JE, Berg S, Armstrong RT. Thermodynamics of fluctuations based on time-and-space averages. Phys Rev E 2021; 104:035106. [PMID: 34654200 DOI: 10.1103/physreve.104.035106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/23/2021] [Indexed: 11/07/2022]
Abstract
We develop nonequilibrium theory by using averages in time and space as a generalized way to upscale thermodynamics in nonergodic systems. The approach offers a classical perspective on the energy dynamics in fluctuating systems. The rate of entropy production is shown to be explicitly scale dependent when considered in this context. We show that while any stationary process can be represented as having zero entropy production, second law constraints due to the Clausius theorem are preserved due to the fact that heat and work are related based on conservation of energy. As a demonstration, we consider the energy dynamics for the Carnot cycle and for Maxwell's demon. We then consider nonstationary processes, applying time-and-space averages to characterize nonergodic effects in heterogeneous systems where energy barriers such as compositional gradients are present. We show that the derived theory can be used to understand the origins of anomalous diffusion phenomena in systems where Fick's law applies at small length scales, but not at large length scales. We further characterize fluctuations in capillary-dominated systems, which are nonstationary due to the irreversibility of cooperative events.
Collapse
Affiliation(s)
- James E McClure
- Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Steffen Berg
- Shell Global Solutions International B.V., Grasweg 31, 1031HW Amsterdam, The Netherlands
| | - Ryan T Armstrong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
16
|
Comparison of the Fluidized State Stability from Radioactive Particle Tracking Results. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid–solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.
Collapse
|
17
|
Seara DS, Machta BB, Murrell MP. Irreversibility in dynamical phases and transitions. Nat Commun 2021; 12:392. [PMID: 33452238 PMCID: PMC7810704 DOI: 10.1038/s41467-020-20281-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/12/2020] [Indexed: 11/11/2022] Open
Abstract
Living and non-living active matter consumes energy at the microscopic scale to drive emergent, macroscopic behavior including traveling waves and coherent oscillations. Recent work has characterized non-equilibrium systems by their total energy dissipation, but little has been said about how dissipation manifests in distinct spatiotemporal patterns. We introduce a measure of irreversibility we term the entropy production factor to quantify how time reversal symmetry is broken in field theories across scales. We use this scalar, dimensionless function to characterize a dynamical phase transition in simulations of the Brusselator, a prototypical biochemically motivated non-linear oscillator. We measure the total energetic cost of establishing synchronized biochemical oscillations while simultaneously quantifying the distribution of irreversibility across spatiotemporal frequencies.
Collapse
Affiliation(s)
- Daniel S Seara
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
| | - Benjamin B Machta
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
| | - Michael P Murrell
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
18
|
Otsubo S, Ito S, Dechant A, Sagawa T. Estimating entropy production by machine learning of short-time fluctuating currents. Phys Rev E 2020; 101:062106. [PMID: 32688599 DOI: 10.1103/physreve.101.062106] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 11/07/2022]
Abstract
Thermodynamic uncertainty relations (TURs) are the inequalities which give lower bounds on the entropy production rate using only the mean and the variance of fluctuating currents. Since the TURs do not refer to the full details of the stochastic dynamics, it would be promising to apply the TURs for estimating the entropy production rate from a limited set of trajectory data corresponding to the dynamics. Here we investigate a theoretical framework for estimation of the entropy production rate using the TURs along with machine learning techniques without prior knowledge of the parameters of the stochastic dynamics. Specifically, we derive a TUR for the short-time region and prove that it can provide the exact value, not only a lower bound, of the entropy production rate for Langevin dynamics, if the observed current is optimally chosen. This formulation naturally includes a generalization of the TURs with the partial entropy production of subsystems under autonomous interaction, which reveals the hierarchical structure of the estimation. We then construct estimators on the basis of the short-time TUR and machine learning techniques such as the gradient ascent. By performing numerical experiments, we demonstrate that our learning protocol performs well even in nonlinear Langevin dynamics. We also discuss the case of Markov jump processes, where the exact estimation is shown to be impossible in general. Our result provides a platform that can be applied to a broad class of stochastic dynamics out of equilibrium, including biological systems.
Collapse
Affiliation(s)
- Shun Otsubo
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sosuke Ito
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0031, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Andreas Dechant
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Van Vu T, Vo VT, Hasegawa Y. Entropy production estimation with optimal current. Phys Rev E 2020; 101:042138. [PMID: 32422750 DOI: 10.1103/physreve.101.042138] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
Entropy production characterizes the thermodynamic irreversibility and reflects the amount of heat dissipated into the environment and free energy lost in nonequilibrium systems. According to the thermodynamic uncertainty relation, we propose a deterministic method to estimate the entropy production from a single trajectory of system states. We explicitly and approximately compute an optimal current that yields the tightest lower bound using predetermined basis currents. Notably, the obtained tightest lower bound is intimately related to the multidimensional thermodynamic uncertainty relation. By proving the saturation of the thermodynamic uncertainty relation in the short-time limit, the exact estimate of the entropy production can be obtained for overdamped Langevin systems, irrespective of the underlying dynamics. For Markov jump processes, because the attainability of the thermodynamic uncertainty relation is not theoretically ensured, the proposed method provides the tightest lower bound for the entropy production. When entropy production is the optimal current, a more accurate estimate can be further obtained using the integral fluctuation theorem. We illustrate the proposed method using three systems: a four-state Markov chain, a periodically driven particle, and a multiple bead-spring model. The estimated results in all examples empirically verify the effectiveness and efficiency of the proposed method.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Van Tuan Vo
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
20
|
Shiraishi N, Saito K. Information-Theoretical Bound of the Irreversibility in Thermal Relaxation Processes. PHYSICAL REVIEW LETTERS 2019; 123:110603. [PMID: 31573259 DOI: 10.1103/physrevlett.123.110603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/02/2019] [Indexed: 06/10/2023]
Abstract
We establish that entropy production, which is crucial to the characterization of thermodynamic irreversibility, is obtained through a variational principle involving the Kulback-Leibler divergence. A simple application of this representation leads to an information-theoretical bound on entropy production in thermal relaxation processes; this is a stronger inequality than the conventional second law of thermodynamics. This bound is also interpreted as a constraint on the possible path of a thermal relaxation process in terms of information geometry. Our results reveal a hidden universal law inherent to general thermal relaxation processes.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-0031 Tokyo, Japan
| | - Keiji Saito
- Department of Physics, Keio university, Hiyoshi 3-14-1, Kohoku-ku, 223-0061 Yokohama, Japan
| |
Collapse
|
21
|
Inferring broken detailed balance in the absence of observable currents. Nat Commun 2019; 10:3542. [PMID: 31387988 PMCID: PMC6684597 DOI: 10.1038/s41467-019-11051-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022] Open
Abstract
Identifying dissipation is essential for understanding the physical mechanisms underlying nonequilibrium processes. In living systems, for example, the dissipation is directly related to the hydrolysis of fuel molecules such as adenosine triphosphate (ATP). Nevertheless, detecting broken time-reversal symmetry, which is the hallmark of dissipative processes, remains a challenge in the absence of observable directed motion, flows, or fluxes. Furthermore, quantifying the entropy production in a complex system requires detailed information about its dynamics and internal degrees of freedom. Here we introduce a novel approach to detect time irreversibility and estimate the entropy production from time-series measurements, even in the absence of observable currents. We apply our technique to two different physical systems, namely, a partially hidden network and a molecular motor. Our method does not require complete information about the system dynamics and thus provides a new tool for studying nonequilibrium phenomena. Non-equilibrium systems with hidden states are relevant for biological systems such as molecular motors. Here the authors introduce a method for quantifying irreversibility in such a system by exploiting the fluctuations in the waiting times of time series data.
Collapse
|
22
|
Manzano G, Fazio R, Roldán É. Quantum Martingale Theory and Entropy Production. PHYSICAL REVIEW LETTERS 2019; 122:220602. [PMID: 31283254 DOI: 10.1103/physrevlett.122.220602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 06/09/2023]
Abstract
We employ martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponential martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally, we complement the general formalism with numerical simulations of a qubit system.
Collapse
Affiliation(s)
- Gonzalo Manzano
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Rosario Fazio
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Édgar Roldán
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
| |
Collapse
|
23
|
Ariga T, Tomishige M, Mizuno D. Nonequilibrium Energetics of Molecular Motor Kinesin. PHYSICAL REVIEW LETTERS 2018; 121:218101. [PMID: 30517811 DOI: 10.1103/physrevlett.121.218101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/18/2018] [Indexed: 06/09/2023]
Abstract
Nonequilibrium energetics of single molecule translational motor kinesin was investigated by measuring heat dissipation from the violation of the fluctuation-response relation of a probe attached to the motor using optical tweezers. The sum of the dissipation and work did not amount to the input free energy change, indicating large hidden dissipation exists. Possible sources of the hidden dissipation were explored by analyzing the Langevin dynamics of the probe, which incorporates the two-state Markov stepper as a kinesin model. We conclude that internal dissipation is dominant.
Collapse
Affiliation(s)
- Takayuki Ariga
- Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| | - Michio Tomishige
- Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Shiraishi N, Funo K, Saito K. Speed Limit for Classical Stochastic Processes. PHYSICAL REVIEW LETTERS 2018; 121:070601. [PMID: 30169075 DOI: 10.1103/physrevlett.121.070601] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 05/10/2023]
Abstract
We consider the speed limit for classical stochastic Markov processes with and without the local detailed balance condition. We find that, for both cases, a trade-off inequality exists between the speed of the state transformation and the entropy production. The dynamical activity is related to a time scale and plays a crucial role in the inequality. For the dynamics without the local detailed balance condition, we use the Hatano-Sasa entropy production instead of the standard entropy production. Our inequalities consist of the quantities that are commonly used in stochastic thermodynamics and explicitly show underlying physical mechanisms.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Physics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 2288521, Japan
| | - Ken Funo
- School of Physics, Peking University, Beijing 100871, China
| | - Keiji Saito
- Department of Physics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 2288521, Japan
| |
Collapse
|
25
|
Ito S. Stochastic Thermodynamic Interpretation of Information Geometry. PHYSICAL REVIEW LETTERS 2018; 121:030605. [PMID: 30085772 DOI: 10.1103/physrevlett.121.030605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 06/08/2023]
Abstract
In recent years, the unified theory of information and thermodynamics has been intensively discussed in the context of stochastic thermodynamics. The unified theory reveals that information theory would be useful to understand nonstationary dynamics of systems far from equilibrium. In this Letter, we have found a new link between stochastic thermodynamics and information theory well-known as information geometry. By applying this link, an information geometric inequality can be interpreted as a thermodynamic uncertainty relationship between speed and thermodynamic cost. We have numerically applied an information geometric inequality to a thermodynamic model of a biochemical enzyme reaction.
Collapse
Affiliation(s)
- Sosuke Ito
- RIES, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
26
|
Gnesotto FS, Mura F, Gladrow J, Broedersz CP. Broken detailed balance and non-equilibrium dynamics in living systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:066601. [PMID: 29504517 DOI: 10.1088/1361-6633/aab3ed] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.
Collapse
Affiliation(s)
- F S Gnesotto
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | | | | | | |
Collapse
|
27
|
Matsumoto T, Sagawa T. Role of sufficient statistics in stochastic thermodynamics and its implication to sensory adaptation. Phys Rev E 2018; 97:042103. [PMID: 29758679 DOI: 10.1103/physreve.97.042103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 11/07/2022]
Abstract
A sufficient statistic is a significant concept in statistics, which means a probability variable that has sufficient information required for an inference task. We investigate the roles of sufficient statistics and related quantities in stochastic thermodynamics. Specifically, we prove that for general continuous-time bipartite networks, the existence of a sufficient statistic implies that an informational quantity called the sensory capacity takes the maximum. Since the maximal sensory capacity imposes a constraint that the energetic efficiency cannot exceed one-half, our result implies that the existence of a sufficient statistic is inevitably accompanied by energetic dissipation. We also show that, in a particular parameter region of linear Langevin systems there exists the optimal noise intensity at which the sensory capacity, the information-thermodynamic efficiency, and the total entropy production are optimized at the same time. We apply our general result to a model of sensory adaptation of E. coli and find that the sensory capacity is nearly maximal with experimentally realistic parameters.
Collapse
Affiliation(s)
- Takumi Matsumoto
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
28
|
Polettini M, Esposito M. Effective Thermodynamics for a Marginal Observer. PHYSICAL REVIEW LETTERS 2017; 119:240601. [PMID: 29286715 DOI: 10.1103/physrevlett.119.240601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Thermodynamics is usually formulated on the presumption that the observer has complete information about the system he or she deals with: no parasitic current, exact evaluation of the forces that drive the system. For example, the acclaimed fluctuation relation (FR), relating the probability of time-forward and time-reversed trajectories, assumes that the measurable transitions suffice to characterize the process as Markovian (in our case, a continuous-time jump process). However, most often the observer only measures a marginal current. We show that he or she will nonetheless produce an effective description that does not dispense with the fundamentals of thermodynamics, including the FR and the 2nd law. Our results stand on the mathematical construction of a hidden time reversal of the dynamics, and on the physical requirement that the observed current only accounts for a single transition in the configuration space of the system. We employ a simple abstract example to illustrate our results and to discuss the feasibility of generalizations.
Collapse
Affiliation(s)
- Matteo Polettini
- Physics and Materials Science Research Unit, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Physics and Materials Science Research Unit, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
29
|
Pal A, Rahav S. Integral fluctuation theorems for stochastic resetting systems. Phys Rev E 2017; 96:062135. [PMID: 29347389 DOI: 10.1103/physreve.96.062135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 05/27/2023]
Abstract
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well-known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems satisfy two integral fluctuation theorems. The first is the Hatano-Sasa relation describing the transition between two steady states. The second integral fluctuation theorem involves a functional that includes both dynamical and thermodynamic contributions. We find that the second law-like inequality found by Fuchs et al. for resetting systems [Europhys. Lett. 113, 60009 (2016)EULEEJ0295-507510.1209/0295-5075/113/60009] can be recovered from this integral fluctuation theorem with the help of Jensen's inequality.
Collapse
Affiliation(s)
- Arnab Pal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Saar Rahav
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
30
|
Shiraishi N, Tajima H. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound. Phys Rev E 2017; 96:022138. [PMID: 28950461 DOI: 10.1103/physreve.96.022138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Indexed: 06/07/2023]
Abstract
A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Hiroyasu Tajima
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, 351-0198 Japan
| |
Collapse
|
31
|
Information-Theoretic Bound on the Entropy Production to Maintain a Classical Nonequilibrium Distribution Using Ancillary Control. ENTROPY 2017. [DOI: 10.3390/e19070333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are many functional contexts where it is desirable to maintain a mesoscopic system in a nonequilibrium state. However, such control requires an inherent energy dissipation. In this article, we unify and extend a number of works on the minimum energetic cost to maintain a mesoscopic system in a prescribed nonequilibrium distribution using ancillary control. For a variety of control mechanisms, we find that the minimum amount of energy dissipation necessary can be cast as an information-theoretic measure of distinguishability between the target nonequilibrium state and the underlying equilibrium distribution. This work offers quantitative insight into the intuitive idea that more energy is needed to maintain a system farther from equilibrium.
Collapse
|
32
|
Shiraishi N. Stationary engines in and beyond the linear response regime at the Carnot efficiency. Phys Rev E 2017; 95:052128. [PMID: 28618475 DOI: 10.1103/physreve.95.052128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 06/07/2023]
Abstract
The condition for stationary engines to attain the Carnot efficiency in and beyond the linear response regime is investigated. We find that this condition for finite-size engines is significantly different from that for macroscopic engines in the thermodynamic limit. For the case of finite-size engines, the tight-coupling condition in the linear response regime directly implies the attainability of the Carnot efficiency beyond the linear response regime. As opposed to this, for the case of macroscopic engines in the thermodynamic limit, there are three types of mechanisms to attain the Carnot efficiency. One mechanism allows engines to attain the Carnot efficiency only in the linear response limit, while the other two mechanisms enable engines to attain the Carnot efficiency beyond the linear response regime. These three mechanisms are classified by introducing a tight-coupling window.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
33
|
Horowitz JM, Zhou K, England JL. Minimum energetic cost to maintain a target nonequilibrium state. Phys Rev E 2017; 95:042102. [PMID: 28505816 DOI: 10.1103/physreve.95.042102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/29/2022]
Abstract
In the absence of external driving, a system exposed to thermal fluctuations will relax to equilibrium. However, the constant input of work makes it possible to counteract this relaxation and maintain the system in a nonequilibrium steady state. In this article, we use the stochastic thermodynamics of Markov jump processes to compute the minimum rate at which energy must be supplied and dissipated to maintain an arbitrary nonequilibrium distribution in a given energy landscape. This lower bound depends on two factors: the undriven probability current in the equilibrium state and the distance from thermal equilibrium of the target distribution. By showing the consequences of this result in a few simple examples, we suggest general implications for the required energetic costs of macromolecular repair and cytosolic protein localization.
Collapse
Affiliation(s)
- Jordan M Horowitz
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Kevin Zhou
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jeremy L England
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
34
|
Kwon C. Information thermodynamics for feedback processes with the appearance of overshooting. Phys Rev E 2017; 95:042103. [PMID: 28505856 DOI: 10.1103/physreve.95.042103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 06/07/2023]
Abstract
We investigate feedback processes with measurement-induced protocols for particular tasks that drive systems in specified directions in state spaces. We focus on mutual information as a measure of correlation between system and memory, which has been known to play a crucial role for the second law of information thermodynamics. The performance of task is enhanced in the early stage of driving, along with the decrease of correlation and mutual information due to the passage from initial measurement. However, we find that the performance is suppressed if the time of driving exceeds a threshold, which we call feedback overshooting. We find that a type of correlation, anticorrelation, between system and memory is built up as a result of overshooting and gives rise to regaining mutual information. We examine the effect of overshooting in detail from two examples. We study the Szilard engine for the task of work extraction. We also study a recurrent feedback with finite time interval for the task to reduce the mean square distance of a colloid below the value by thermal fluctuation. We find that recurrent feedback is stable only for a moderate range of time intervals and the intensity of feedback protocol. We discuss the problem of divergence of mutual information for error-free measurement.
Collapse
Affiliation(s)
- Chulan Kwon
- Department of Physics, Myongji University, Yongin, Gyeonggi-Do, 17058, Korea and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
35
|
Loutchko D, Eisbach M, Mikhailov AS. Stochastic thermodynamics of a chemical nanomachine: The channeling enzyme tryptophan synthase. J Chem Phys 2017; 146:025101. [DOI: 10.1063/1.4973544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Ito S. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality. Sci Rep 2016; 6:36831. [PMID: 27833120 PMCID: PMC5104982 DOI: 10.1038/srep36831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022] Open
Abstract
The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics.
Collapse
Affiliation(s)
- Sosuke Ito
- Department of Physics, Tokyo Institute of Technology, Oh-okayama 2-12-1, Meguro-ku, Tokyo 152-8551, Japan
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
37
|
Shiraishi N, Saito K, Tasaki H. Universal Trade-Off Relation between Power and Efficiency for Heat Engines. PHYSICAL REVIEW LETTERS 2016; 117:190601. [PMID: 27858428 DOI: 10.1103/physrevlett.117.190601] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 06/06/2023]
Abstract
For a general thermodynamic system described as a Markov process, we prove a general lower bound for dissipation in terms of the square of the heat current, thus establishing that nonvanishing current inevitably implies dissipation. This leads to a universal trade-off relation between efficiency and power, with which we rigorously prove that a heat engine with nonvanishing power never attains the Carnot efficiency. Our theory applies to systems arbitrarily far from equilibrium, and does not assume any specific symmetry of the model.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Hal Tasaki
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
38
|
Yamamoto S, Ito S, Shiraishi N, Sagawa T. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines. Phys Rev E 2016; 94:052121. [PMID: 27967007 DOI: 10.1103/physreve.94.052121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 06/06/2023]
Abstract
In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.
Collapse
Affiliation(s)
- Shumpei Yamamoto
- Department of Basic Science, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sosuke Ito
- Department of Physics, Tokyo Institute of Technology, Oh-okayama 2-12-1, Meguro-ku, Tokyo 152-8551, Japan
| | - Naoto Shiraishi
- Department of Basic Science, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
39
|
Abstract
Feedback loops are known as a versatile tool for controlling transport in small systems, which usually have large intrinsic fluctuations. Here we investigate the control of a temporal correlation function, the waiting-time distribution, under active and passive feedback conditions. We develop a general formalism and then specify to the simple unidirectional transport model, where we compare costs of open-loop and feedback control and use methods from optimal control theory to optimize waiting-time distributions.
Collapse
Affiliation(s)
- Tobias Brandes
- Institut für Theoretische Physik, Hardenbergstr. 36, TU Berlin, D-10623 Berlin, Germany
| | - Clive Emary
- Joint Quantum Centre Durham-Newcastle, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
40
|
García-García R, Lahiri S, Lacoste D. Thermodynamic inference based on coarse-grained data or noisy measurements. Phys Rev E 2016; 93:032103. [PMID: 27078288 DOI: 10.1103/physreve.93.032103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 11/07/2022]
Abstract
Fluctuation theorems have become an important tool in single-molecule biophysics to measure free-energy differences from nonequilibrium experiments. When significant coarse-graining or noise affect the measurements, the determination of the free energies becomes challenging. In order to address this thermodynamic inference problem, we propose improved estimators of free-energy differences based on fluctuation theorems, which we test on a number of examples. The effect of the noise can be described by an effective temperature, which only depends on the signal-to-noise ratio, when the work is Gaussian distributed and uncorrelated with the error made on the work. The notion of effective temperature appears less useful for non-Gaussian work distributions or when the error is correlated with the work, but nevertheless, as we show, improved estimators can still be constructed for such cases. As an example of nontrivial correlations between the error and the work, we also consider measurements with delay, as described by linear Langevin equations.
Collapse
Affiliation(s)
- Reinaldo García-García
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes-UMR CNRS 7636, ESPCI, 10 rue de Vauquelin, 75231 Paris cedex 05, France
| | - Sourabh Lahiri
- Laboratoire de Physico-Chimie Théorique-UMR CNRS Gulliver 7083, PSL Research University, ESPCI, 10 rue de Vauquelin, 75231 Paris cedex 05, France
| | - David Lacoste
- Laboratoire de Physico-Chimie Théorique-UMR CNRS Gulliver 7083, PSL Research University, ESPCI, 10 rue de Vauquelin, 75231 Paris cedex 05, France
| |
Collapse
|
41
|
Kutvonen A, Sagawa T, Ala-Nissila T. Thermodynamics of information exchange between two coupled quantum dots. Phys Rev E 2016; 93:032147. [PMID: 27078332 DOI: 10.1103/physreve.93.032147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 06/05/2023]
Abstract
We propose a setup based on two coupled quantum dots where thermodynamics of a measurement can be quantitatively characterized. The information obtained in the measurement can be utilized by performing feedback in a manner apparently breaking the second law of thermodynamics. In this way the setup can be operated as a Maxwell's demon, where both the measurement and feedback are performed separately by controlling an external parameter. This is analogous to the case of the original Szilard engine. Since the setup contains both the microscopic demon and the engine itself, the operation of the whole measurement-feedback cycle can be explained in detail at the level of single realizations. In addition, we derive integral fluctuation relations for both the bare and coarse-grained entropy productions in the setup.
Collapse
Affiliation(s)
- Aki Kutvonen
- COMP Center of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tapio Ala-Nissila
- COMP Center of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
- Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA
| |
Collapse
|
42
|
Thermodynamics and efficiency of an autonomous on-chip Maxwell's demon. Sci Rep 2016; 6:21126. [PMID: 26887504 PMCID: PMC4758063 DOI: 10.1038/srep21126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/04/2016] [Indexed: 11/23/2022] Open
Abstract
In his famous letter in 1870, Maxwell describes how Joule’s law can be violated “only by the intelligent action of a mere guiding agent”, later coined as Maxwell’s demon by Lord Kelvin. In this letter we study thermodynamics of information using an experimentally feasible Maxwell’s demon setup based a single electron transistor capacitively coupled to a single electron box, where both the system and the Demon can be clearly identified. Such an engineered on-chip Demon measures and performes feedback on the system, which can be observed as cooling whose efficiency can be adjusted. We present a detailed analysis of the system and the Demon, including the second law of thermodynamics for bare and coarse grained entropy production and the flow of information as well as efficiency of information production and utilization. Our results demonstrate how information thermodynamics can be used to improve functionality of modern nanoscale devices.
Collapse
|
43
|
Hartich D, Barato AC, Seifert U. Sensory capacity: An information theoretical measure of the performance of a sensor. Phys Rev E 2016; 93:022116. [PMID: 26986297 DOI: 10.1103/physreve.93.022116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 05/10/2023]
Abstract
For a general sensory system following an external stochastic signal, we introduce the sensory capacity. This quantity characterizes the performance of a sensor: sensory capacity is maximal if the instantaneous state of the sensor has as much information about a signal as the whole time series of the sensor. We show that adding a memory to the sensor increases the sensory capacity. This increase quantifies the improvement of the sensor with the addition of the memory. Our results are obtained with the framework of stochastic thermodynamics of bipartite systems, which allows for the definition of an efficiency that relates the rate with which the sensor learns about the signal with the energy dissipated by the sensor, which is given by the thermodynamic entropy production. We demonstrate a general trade-off between sensory capacity and efficiency: if the sensory capacity is equal to its maximum 1, then the efficiency must be less than 1/2. As a physical realization of a sensor we consider a two-component cellular network estimating a fluctuating external ligand concentration as signal. This model leads to coupled linear Langevin equations that allow us to obtain explicit analytical results.
Collapse
Affiliation(s)
- David Hartich
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andre C Barato
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
- Max Planck Institute for the Physics of Complex Systems, Nöthnizer Straße 38, 01187 Dresden, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
44
|
Shiraishi N. Attainability of Carnot efficiency with autonomous engines. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:050101. [PMID: 26651627 DOI: 10.1103/physreve.92.050101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 06/05/2023]
Abstract
The maximum efficiency of autonomous engines with a finite chemical potential difference is investigated. We show that, without a particular type of singularity, autonomous engines cannot attain the Carnot efficiency. This singularity is realized in two ways: single particle transports and the thermodynamic limit. We demonstrate that both of these ways actually lead to the Carnot efficiency in concrete setups. Our results clearly illustrate that the singularity plays a crucial role in the maximum efficiency of autonomous engines.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
45
|
Strasberg P, Cerrillo J, Schaller G, Brandes T. Thermodynamics of stochastic Turing machines. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042104. [PMID: 26565165 DOI: 10.1103/physreve.92.042104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 06/05/2023]
Abstract
In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps.
Collapse
Affiliation(s)
- Philipp Strasberg
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Javier Cerrillo
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Gernot Schaller
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Tobias Brandes
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| |
Collapse
|
46
|
Maxwell's demon in biochemical signal transduction with feedback loop. Nat Commun 2015; 6:7498. [PMID: 26099556 PMCID: PMC4557369 DOI: 10.1038/ncomms8498] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 05/12/2015] [Indexed: 11/17/2022] Open
Abstract
Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on ‘Maxwell's demon'—a feedback controller that utilizes information of individual molecules—have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information–thermodynamics link. The connection between information and thermodynamics is embodied in the figure of Maxwell's demon, a feedback controller. Here, the authors apply thermodynamics of information to signal transduction in chemotaxis of E. coli, predicting that its robustness is quantified by transfer entropy.
Collapse
|
47
|
Chun HM, Noh JD. Hidden entropy production by fast variables. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052128. [PMID: 26066140 DOI: 10.1103/physreve.91.052128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 06/04/2023]
Abstract
We investigate nonequilibrium underdamped Langevin dynamics of Brownian particles that interact through a harmonic potential with coupling constant K and are in thermal contact with two heat baths at different temperatures. The system is characterized by a net heat flow and an entropy production in the steady state. We compare the entropy production of the harmonic system with that of Brownian particles linked with a rigid rod. The harmonic system may be expected to reduce to the rigid rod system in the infinite K limit. However, we find that the harmonic system in the K→∞ limit produces more entropy than the rigid rod system. The harmonic system has the center-of-mass coordinate as a slow variable and the relative coordinate as a fast variable. By identifying the contributions of the degrees of freedom to the total entropy production, we show that the hidden entropy production by the fast variable is responsible for the extra entropy production. We discuss the K dependence of each contribution.
Collapse
Affiliation(s)
- Hyun-Myung Chun
- Department of Physics, University of Seoul, Seoul 130-743, Korea
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 130-743, Korea
- School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea
| |
Collapse
|
48
|
Brandes T. Feedback between interacting transport channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052149. [PMID: 26066161 DOI: 10.1103/physreve.91.052149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 06/04/2023]
Abstract
A model of particle transport through a large number of channels is introduced. Interactions among the particles can lead to a strong suppression of fluctuations in the particle number statistics. Within a mean-field-type limit, this becomes equivalent to a time-dependent (nonautonomous) collective feedback control mechanism. The dynamics can be interpreted as a diffusive spreading of a feedback signal across the channels that displays scaling, can be quantified via the flow of information, and becomes visible, e.g., in the spectral function of the particle noise.
Collapse
Affiliation(s)
- T Brandes
- Institut für Theoretische Physik, Hardenbergstr. 36, TU Berlin, D-10623 Berlin, Germany
| |
Collapse
|
49
|
Rosinberg ML, Munakata T, Tarjus G. Stochastic thermodynamics of Langevin systems under time-delayed feedback control: Second-law-like inequalities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042114. [PMID: 25974446 DOI: 10.1103/physreve.91.042114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Response lags are generic to almost any physical system and often play a crucial role in the feedback loops present in artificial nanodevices and biological molecular machines. In this paper, we perform a comprehensive study of small stochastic systems governed by an underdamped Langevin equation and driven out of equilibrium by a time-delayed continuous feedback control. In their normal operating regime, these systems settle in a nonequilibrium steady state in which work is permanently extracted from the surrounding heat bath. By using the Fokker-Planck representation of the dynamics, we derive a set of second-law-like inequalities that provide bounds to the rate of extracted work. These inequalities involve additional contributions characterizing the reduction of entropy production due to the continuous measurement process. We also show that the non-Markovian nature of the dynamics requires a modification of the basic relation linking dissipation to the breaking of time-reversal symmetry at the level of trajectories. The modified relation includes a contribution arising from the acausal character of the reverse process. This, in turn, leads to another second-law-like inequality. We illustrate the general formalism with a detailed analytical and numerical study of a harmonic oscillator driven by a linear feedback, which describes actual experimental setups.
Collapse
Affiliation(s)
- M L Rosinberg
- Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, CNRS UMR 7600, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - T Munakata
- Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - G Tarjus
- Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, CNRS UMR 7600, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
50
|
Zimmermann E, Seifert U. Effective rates from thermodynamically consistent coarse-graining of models for molecular motors with probe particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022709. [PMID: 25768533 DOI: 10.1103/physreve.91.022709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Indexed: 06/04/2023]
Abstract
Many single-molecule experiments for molecular motors comprise not only the motor but also large probe particles coupled to it. The theoretical analysis of these assays, however, often takes into account only the degrees of freedom representing the motor. We present a coarse-graining method that maps a model comprising two coupled degrees of freedom which represent motor and probe particle to such an effective one-particle model by eliminating the dynamics of the probe particle in a thermodynamically and dynamically consistent way. The coarse-grained rates obey a local detailed balance condition and reproduce the net currents. Moreover, the average entropy production as well as the thermodynamic efficiency is invariant under this coarse-graining procedure. Our analysis reveals that only by assuming unrealistically fast probe particles, the coarse-grained transition rates coincide with the transition rates of the traditionally used one-particle motor models. Additionally, we find that for multicyclic motors the stall force can depend on the probe size. We apply this coarse-graining method to specific case studies of the F(1)-ATPase and the kinesin motor.
Collapse
Affiliation(s)
- Eva Zimmermann
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|