1
|
Skopin MD, Bayat A, Kurada L, Siddu M, Joshi S, Zelano CM, Koubeissi MZ. Epileptogenesis-induced changes of hippocampal-piriform connectivity. Seizure 2020; 81:1-7. [PMID: 32682283 DOI: 10.1016/j.seizure.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Tissue remodeling has been described in brain circuits that are involved in the generation and propagation of epileptic seizures. Human and animal studies suggest that the anterior piriform cortex (aPC) is crucial for seizure expression in focal epilepsies. Here, we investigate the effect of kainic-acid (KA)-induced seizures on the effective connectivity of the aPC with bilateral hippocampal CA3 regions using cerebro-cerebral evoked potentials (CCEPs). METHODS Adult male Sprague-Dawley rats were implanted with a tripolar electrode in the left aPC for stimulation and recording, and with unipolar recording electrodes in bilateral CA3 regions. Single pulse stimulations were given to the aPC and CCEPs were averaged before KA injections and after the emergence of spontaneous recurrent seizures (SRS). Similar recordings at equivalent time intervals were obtained from animals that received saline injections instead of KA (controls). RESULTS In the experimental group, the percentage change of increased amplitude of the contralateral (but not ipsilateral) CA3 CCEPs between pre-KA injection and after the emergence of SRS was significantly greater than in controls. No significant single-pulse-induced spectral change responses were observed in either epileptic or control rats when comparing pre- and post-stimulus time intervals. Also, we found no correlation between seizure frequency and the extent of amplitude changes in the CCEPs. CONCLUSIONS In the KA model, epileptogenesis results in plastic changes that manifest as an amplification of evoked potential amplitudes recorded in the contralateral hippocampus in response to single-pulse stimulation of the aPC. These results suggest epileptogenesis-induced facilitation of interhemispheric connectivity between the aPC and the hippocampus. Since the amplitude increase of the contralateral CCEP is a possible in vivo biomarker of epilepsy, any intervention (e.g. neuromodulatory) that can reverse this phenomenon may hold a potential antiepileptic efficacy.
Collapse
Affiliation(s)
- Mark D Skopin
- Department of Neurology, George Washington University, Washington, DC, 20037, USA
| | - Arezou Bayat
- Department of Neurology, George Washington University, Washington, DC, 20037, USA
| | - Lalitha Kurada
- Department of Neurology, George Washington University, Washington, DC, 20037, USA
| | - Mithilesh Siddu
- Department of Neurology, George Washington University, Washington, DC, 20037, USA
| | - Sweta Joshi
- Department of Neurology, George Washington University, Washington, DC, 20037, USA
| | - Christina M Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mohamad Z Koubeissi
- Department of Neurology, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
2
|
Veerakumar A, Tiruvadi V, Howell B, Waters AC, Crowell AL, Voytek B, Riva-Posse P, Denison L, Rajendra JK, Edwards JA, Bijanki KR, Choi KS, Mayberg HS. Field potential 1/ f activity in the subcallosal cingulate region as a candidate signal for monitoring deep brain stimulation for treatment-resistant depression. J Neurophysiol 2019; 122:1023-1035. [PMID: 31314668 PMCID: PMC6766743 DOI: 10.1152/jn.00875.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
Subcallosal cingulate cortex deep brain stimulation (SCC-DBS) is an experimental therapy for treatment-resistant depression (TRD). Refinement and optimization of SCC-DBS will benefit from increased study of SCC electrophysiology in context of ongoing high-frequency SCC-DBS therapy. The study objective was a 7-mo observation of frequency-domain 1/f slope in off-stimulation local field potentials (SCC-LFPs) alongside standardized measurements of depression severity in 4 patients undergoing SCC-DBS. SCC was implanted bilaterally with a combined neurostimulation-LFP recording system. Following a 1-mo off-stimulation postoperative phase with multiple daily recordings, patients received bilateral SCC-DBS therapy (130 Hz, 90 μs) and weekly resting-state SCC-LFP recordings over a 6-mo treatment phase. 1/f slopes for each time point were estimated via linear regression of log-transformed Welch periodograms. General linear mixed-effects models were constructed to estimate pretreatment sources of 1/f slope variance, and 95% bootstrap confidence intervals were constructed to estimate treatment phase 1/f slope association with treatment response (50% decrease in preimplantation symptom severity). Results show the time of recording was a prominent source of pretreatment 1/f slope variance bilaterally, with increased 1/f slope magnitude observed during night hours (2300-0659). Increase in right 1/f slope was observed in the setting of treatment response, with bootstrap analysis supporting this observation in 3 of 4 subjects. We conclude that 1/f slope can be measured longitudinally in a combined SCC-DBS/LFP recording system and likely conforms to known 1/f circadian variability. The preliminary evidence of 1/f slope increase during treatment response suggests a potential utility as a candidate biomarker for ongoing development of adaptive TRD-neuromodulation strategies.NEW & NOTEWORTHY In four patients with treatment-resistant depression undergoing therapeutic deep brain stimulation (DBS), we present the first longitudinal observations of local field potentials (LFP) from the subcallosal cingulate region outside the postoperative period. Specifically, our results demonstrate that frequency-domain 1/f activity is measurable in a combined DBS-LFP recording system and that right hemisphere recordings appear sensitive to mood state, thus suggesting a potential readout suitable for consideration in ongoing efforts to develop adaptive DBS delivery systems.
Collapse
Affiliation(s)
- Ashan Veerakumar
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Bryan Howell
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Allison C Waters
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea L Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Bradley Voytek
- Department of Cognitive Science, University of California San Diego, La Jolla, California
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Lydia Denison
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Justin K Rajendra
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Scientific and Statistical Computational Core. National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Johnathan A Edwards
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia
| | - Kelly R Bijanki
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen S Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
- Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
Vannini E, Caleo M, Chillemi S, Di Garbo A. Dynamical properties of LFPs from mice with unilateral injection of TeNT. Biosystems 2017; 161:57-66. [PMID: 28918300 DOI: 10.1016/j.biosystems.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
Local field potential (LFP) recordings were performed from the visual cortex (V1) of a focal epilepsy mouse model. Epilepsy was induced by a unilateral injection of the synaptic blocker tetanus neurotoxin (TeNT). LFP signals were simultaneously recorded from V1 of both hemispheres of each animal under acute and chronic conditions (i.e. during and after the period of TeNT action). All data were analysed by using nonlinear time series methods. Suitable values of the lag time and embedding dimension for phase space reconstruction were estimated by employing well-known methods. The results showed that lag times are sensitive to the presence of TeNT. Interestingly, TeNT promoted an increase in the level of linear and nonlinear correlation of LFP signals. The values of the embedding dimension failed to show any dependence on the presence of the neurotoxin. However, a local nonlinear prediction method showed that the presence of TeNT increases the predictability, quantified by the normalized prediction error, of the neural recordings. From a neurophysiological point of view, the above results suggest that TeNT injected in one hemisphere strongly impacts the local electrical activity of the neural populations in the opposite hemisphere. We hypothesize that this could arise from a qualitative and quantitative alteration of the transmission properties of the callosal fibers.
Collapse
Affiliation(s)
- Eleonora Vannini
- Neuroscience Institute, CNR-National Research Council, 56124 Pisa, Italy
| | - Matteo Caleo
- Neuroscience Institute, CNR-National Research Council, 56124 Pisa, Italy
| | - Santi Chillemi
- Institute of Biophysics, CNR-National Research Council, 56124 Pisa, Italy
| | - Angelo Di Garbo
- Institute of Biophysics, CNR-National Research Council, 56124 Pisa, Italy.
| |
Collapse
|
4
|
Vallone F, Vannini E, Cintio A, Caleo M, Di Garbo A. Time evolution of interhemispheric coupling in a model of focal neocortical epilepsy in mice. Phys Rev E 2016; 94:032409. [PMID: 27739854 DOI: 10.1103/physreve.94.032409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/07/2022]
Abstract
Epilepsy is characterized by substantial network rearrangements leading to spontaneous seizures and little is known on how an epileptogenic focus impacts on neural activity in the contralateral hemisphere. Here, we used a model of unilateral epilepsy induced by injection of the synaptic blocker tetanus neurotoxin (TeNT) in the mouse primary visual cortex (V1). Local field potential (LFP) signals were simultaneously recorded from both hemispheres of each mouse in acute phase (peak of toxin action) and chronic condition (completion of TeNT effects). To characterize the neural electrical activities the corresponding LFP signals were analyzed with several methods of time series analysis. For the epileptic mice, the spectral analysis showed that TeNT determines a power redistribution among the different neurophysiological bands in both acute and chronic phases. Using linear and nonlinear interdependence measures in both time and frequency domains, it was found in the acute phase that TeNT injection promotes a reduction of the interhemispheric coupling for high frequencies (12-30 Hz) and small time lag (<20 ms), whereas an increase of the coupling is present for low frequencies (0.5-4 Hz) and long time lag (>40 ms). On the other hand, the chronic period is characterized by a partial or complete recovery of the interhemispheric interdependence level. Granger causality test and symbolic transfer entropy indicate a greater driving influence of the TeNT-injected side on activity in the contralateral hemisphere in the chronic phase. Lastly, based on experimental observations, we built a computational model of LFPs to investigate the role of the ipsilateral inhibition and exicitatory interhemispheric connections in the dampening of the interhemispheric coupling. The time evolution of the interhemispheric coupling in such a relevant model of epilepsy has been addressed here.
Collapse
Affiliation(s)
- F Vallone
- Institute of Biophysics, CNR-National Research Council, 56124 Pisa, Italy.,The Biorobotics Institute, Scuola Superiore Sant'Anna, 56026 Pisa, Italy
| | - E Vannini
- Neuroscience Institute, CNR-National Research Council, 56124 Pisa, Italy
| | - A Cintio
- Institute of Biophysics, CNR-National Research Council, 56124 Pisa, Italy
| | - M Caleo
- Neuroscience Institute, CNR-National Research Council, 56124 Pisa, Italy
| | - A Di Garbo
- Institute of Biophysics, CNR-National Research Council, 56124 Pisa, Italy.,INFN-Section of Pisa, 56127 Pisa, Italy
| |
Collapse
|