1
|
He Z, Zhou T. A model for cooperative scientific research inspired by the ant colony algorithm. PLoS One 2022; 17:e0262933. [PMID: 35085346 PMCID: PMC8794102 DOI: 10.1371/journal.pone.0262933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/09/2022] [Indexed: 11/22/2022] Open
Abstract
Modern scientific research has become largely a cooperative activity in the Internet age. We build a simulation model to understand the population-level creativity based on the heuristic ant colony algorithm. Each researcher has two heuristic parameters characterizing the goodness of his own judgments and his trust on literature. We study how the distributions of contributor heuristic parameters change with the research problem scale, stage of the research problem, and computing power available. We also identify situations where path dependence and hasty research due to the pressure on productivity can significantly impede the long-term advancement of scientific research. Our work provides some preliminary understanding and guidance for the dynamical process of cooperative scientific research in various disciplines.
Collapse
Affiliation(s)
- Zhuoran He
- School of Physics and Electronic Science, Hubei University, Wuhan, Hubei, China
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingtao Zhou
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
2
|
Hu K, Xiang J, Yu YX, Tang L, Xiang Q, Li JM, Tang YH, Chen YJ, Zhang Y. Significance-based multi-scale method for network community detection and its application in disease-gene prediction. PLoS One 2020; 15:e0227244. [PMID: 32196490 PMCID: PMC7083276 DOI: 10.1371/journal.pone.0227244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Community detection in complex networks is an important issue in network science. Several statistical measures have been proposed and widely applied to detecting the communities in various complex networks. However, due to the lack of flexibility resolution, some of them have to encounter the resolution limit and thus are not compatible with multi-scale structures of complex networks. In this paper, we investigated a statistical measure of interest for community detection, Significance [Sci. Rep. 3 (2013) 2930], and analyzed its critical behaviors based on the theoretical derivation of critical number of communities and the phase diagram in community-partition transition. It was revealed that Significance exhibits far higher resolution than the traditional Modularity when the intra- and inter-link densities of communities are obviously different. Following the critical analysis, we developed a multi-resolution version of Significance for identifying communities in the multi-scale networks. Experimental tests in several typical networks have been performed and confirmed that the generalized Significance can be competent for the multi-scale communities detection. Moreover, it can effectively relax the first- and second-type resolution limits. Finally, we displayed an important potential application of the multi-scale Significance in computational biology: disease-gene identification, showing that extracting information from the perspective of multi-scale module mining is helpful for disease gene prediction.
Collapse
Affiliation(s)
- Ke Hu
- School of Physics and Optoelectronic Engineering, Xiangtan University, Xiangtan, Hunan, People’s Republic of China
| | - Ju Xiang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, People’s Republic of China
- School of Basic Medical Sciences, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Yun-Xia Yu
- School of Physics and Optoelectronic Engineering, Xiangtan University, Xiangtan, Hunan, People’s Republic of China
| | - Liang Tang
- School of Basic Medical Sciences, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Qin Xiang
- School of Basic Medical Sciences, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Jian-Ming Li
- School of Basic Medical Sciences, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- Department of Neurology, Xiang-ya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, Hunan, People’s Republic of China
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Yong-Hong Tang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Yong-Jun Chen
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Yan Zhang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, People’s Republic of China
- School of Basic Medical Sciences, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Bai YN, Huang N, Wang L, Wu ZX. Robustness and Vulnerability of Networks with Dynamical Dependency Groups. Sci Rep 2016; 6:37749. [PMID: 27892940 PMCID: PMC5125273 DOI: 10.1038/srep37749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/02/2016] [Indexed: 11/08/2022] Open
Abstract
The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.
Collapse
Affiliation(s)
- Ya-Nan Bai
- School of Reliability and Systems Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Ning Huang
- School of Reliability and Systems Engineering, Beihang University, Beijing, 100191, P.R. China
- Key Laboratory of Science & Technology on Reliability & Environmental Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Lei Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| |
Collapse
|