1
|
Montero AM, Santos A. Exact equilibrium properties of square-well and square-shoulder disks in single-file confinement. Phys Rev E 2024; 110:024601. [PMID: 39295021 DOI: 10.1103/physreve.110.024601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/17/2024] [Indexed: 09/21/2024]
Abstract
This study investigates the (longitudinal) thermodynamic and structural characteristics of single-file confined square-well and square-shoulder disks by employing a mapping technique that transforms the original system into a one-dimensional polydisperse mixture of nonadditive rods. Leveraging standard statistical-mechanical techniques, exact results are derived for key properties, including the equation of state, internal energy, radial distribution function, and structure factor. The asymptotic behavior of the radial distribution function is explored, revealing structural changes in the spatial correlations. Additionally, exact analytical expressions for the second virial coefficient are presented. The theoretical results for the thermodynamic and structural properties are validated by our Monte Carlo simulations.
Collapse
Affiliation(s)
- Ana M Montero
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Andrés Santos
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain
- Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
2
|
Franosch T, Schilling R. Thermodynamic properties of quasi-one-dimensional fluids. J Chem Phys 2024; 160:224504. [PMID: 38874101 DOI: 10.1063/5.0207758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We calculate thermodynamic and structural quantities of a fluid of hard spheres of diameter σ in a quasi-one-dimensional pore with accessible pore width W smaller than σ by applying a perturbative method worked out earlier for a confined fluid in a slit pore [Franosch et al. Phys. Rev. Lett. 109, 240601 (2012)]. In a first step, we prove that the thermodynamic and a certain class of structural quantities of the hard-sphere fluid in the pore can be obtained from a purely one-dimensional fluid of rods of length σ with a central hard core of size σW=σ2-W2 and a soft part at both ends of length (σ - σW)/2. These rods interact via effective k-body potentials veff(k) (k ≥ 2). The two- and the three-body potential will be calculated explicitly. In a second step, the free energy of this effective one-dimensional fluid is calculated up to leading order in (W/σ)2. Explicit results for, e.g., the perpendicular pressure, surface tension, and the density profile as a function of density, temperature, and pore width are presented and partly compared with results from Monte-Carlo simulations and standard virial expansions. Despite the perturbative character of our approach, it encompasses the singularity of the thermodynamic quantities at the jamming transition point.
Collapse
Affiliation(s)
- Thomas Franosch
- Institut für Theoretische Physick, Universität Innsbruck, Technikerstraße, 21A, A-6020 Innsbruck, Austria
| | - Rolf Schilling
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| |
Collapse
|
3
|
Montero AM, Santos A, Gurin P, Varga S. Ordering properties of anisotropic hard bodies in one-dimensional channels. J Chem Phys 2023; 159:154507. [PMID: 37861120 DOI: 10.1063/5.0169605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The phase behavior and structural properties of hard anisotropic particles (prisms and dumbbells) are examined in one-dimensional channels using the Parsons-Lee (PL) theory, and the transfer-matrix and neighbor-distribution methods. The particles are allowed to move freely along the channel, while their orientations are constrained such that one particle can occupy only two or three different lengths along the channel. In this confinement setting, hard prisms behave as an additive mixture, while hard dumbbells behave as a non-additive one. We prove that all methods provide exact results for the phase properties of hard prisms, while only the neighbor-distribution and transfer-matrix methods are exact for hard dumbbells. This shows that non-additive effects are incorrectly included into the PL theory, which is a successful theory of the isotropic-nematic phase transition of rod-like particles in higher dimensions. In the one-dimensional channel, the orientational ordering develops continuously with increasing density, i.e., the system is isotropic only at zero density, while it becomes perfectly ordered at the close-packing density. We show that there is no orientational correlation in the hard prism system, while the hard dumbbells are orientationally correlated with diverging correlation length at close packing. On the other hand, positional correlations are present for all the systems, the associated correlation length diverging at close packing.
Collapse
Affiliation(s)
- Ana M Montero
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Andrés Santos
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain
- Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Péter Gurin
- Physics Department, Centre for Natural Sciences, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Szabolcs Varga
- Physics Department, Centre for Natural Sciences, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|
4
|
Montero AM, Santos A. Equation of state of hard-disk fluids under single-file confinement. J Chem Phys 2023; 158:2882841. [PMID: 37094005 DOI: 10.1063/5.0139116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
The exact transfer-matrix solution for the longitudinal equilibrium properties of the single-file hard-disk fluid is used to study the limiting low- and high-pressure behaviors analytically as functions of the pore width. In the low-pressure regime, the exact third and fourth virial coefficients are obtained, which involve single and double integrals, respectively. Moreover, we show that the standard irreducible diagrams do not provide a complete account of the virial coefficients in confined geometries. The asymptotic equation of state in the high-pressure limit is seen to present a simple pole at the close-packing linear density, as in the hard-rod fluid, but, in contrast to the latter case, the residue is 2. Since, for an arbitrary pressure, the exact transfer-matrix treatment requires the numerical solution of an eigenvalue integral equation, we propose here two simple approximations to the equation of state, with different complexity levels, and carry out an extensive assessment of their validity and practical convenience vs the exact solution and available computer simulations.
Collapse
Affiliation(s)
- Ana M Montero
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Andrés Santos
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain
- Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
5
|
Gurin P, Varga S. Anomalous phase behavior of quasi-one-dimensional attractive hard rods. Phys Rev E 2022; 106:044606. [PMID: 36397485 DOI: 10.1103/physreve.106.044606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
We study a two-state model of attractive hard rods using the transfer matrix method, where the centers of the particles are confined to a straight line, but the orientations of the rods can be parallel or perpendicular to the confining line. The rods are modeled as hard rectangles with length L and width D and decorated with attractive sites at both ends of the rectangles. We find that the particles align parallel to the line and form long chains at low densities, while they turn out of the line and form a Tonks gas at high densities. With increasing the stickiness between the rods, the structural change between parallel and perpendicular states becomes stronger and the pressure vs density curve becomes almost a horizontal line at the transition pressure. We show that such a behavior is reminiscent of the first-order phase transition. This manifests in the validity of the lever rule of the phase transitions for very sticky cases.
Collapse
Affiliation(s)
- Péter Gurin
- Physics Department, Centre for Natural Sciences, University of Pannonia, PO Box 158, Veszprém, H-8201 Hungary
| | - Szabolcs Varga
- Physics Department, Centre for Natural Sciences, University of Pannonia, PO Box 158, Veszprém, H-8201 Hungary
| |
Collapse
|
6
|
Zarif M, Spiteri RJ, Bowles RK. Inherent structure landscape of hard spheres confined to narrow cylindrical channels. Phys Rev E 2021; 104:064602. [PMID: 35030837 DOI: 10.1103/physreve.104.064602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The inherent structure landscape for a system of hard spheres confined to a hard cylindrical channel, such that spheres can only contact their first and second neighbors, is studied using an analytical model that extends previous results [Phys. Rev. Lett. 115, 025702 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.025702] to provide a comprehensive picture of jammed packings over a range of packing densities. In the model, a packing is described as an arrangement of k helical sections, separated by defects, that have alternating helical twist directions and where all spheres satisfy local jamming constraints. The structure of each helical section is determined by a single helical twist angle, and a jammed packing is obtained by minimizing the length of the channel per particle with respect to the k helical section angles. An analysis of a small system of N=20 spheres shows that the basins on the inherent structure landscape associated with these helical arrangements split into a number of distinct jammed states separated by low barriers giving rise to a degree of hierarchical organization. The model accurately predicts the geometric properties of packings generated using the Lubachevsky and Stillinger compression scheme (N=10^{4}) and provides insight into the nature of the probability distribution of helical section lengths.
Collapse
Affiliation(s)
- Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Raymond J Spiteri
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Richard K Bowles
- Department of Chemistry, University of Saskatchewan, SK, S7N 5C9, Canada
- Centre for Quantum Topology and its Applications (quanTA), University of Saskatchewan, SK S7N 5E6, Canada
| |
Collapse
|
7
|
Weeks ER, Criddle K. Visualizing free-energy landscapes for four hard disks. Phys Rev E 2020; 102:062153. [PMID: 33466114 DOI: 10.1103/physreve.102.062153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
We present a simple model system with four hard disks moving in a circular region for which free-energy landscapes can be directly calculated and visualized in two and three dimensions. We construct several energy landscapes for our system, and we explore the strengths and limitations of each in terms of understanding system dynamics, in particular the relationship between state transitions and free-energy barriers. We also demonstrate the importance of distinguishing between system dynamics in real space and those in landscape coordinates, and we show that care must be taken to appropriately combine dynamics with barrier properties to understand the transition rates. This simple model provides an intuitive way to understand free-energy landscapes, and it illustrates the benefits that free-energy landscapes can have over potential energy landscapes.
Collapse
Affiliation(s)
- Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Keely Criddle
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
8
|
Pergamenshchik VM. Analytical canonical partition function of a quasi-one-dimensional system of hard disks. J Chem Phys 2020; 153:144111. [PMID: 33086807 DOI: 10.1063/5.0025645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The exact canonical partition function of a hard disk system in a narrow quasi-one-dimensional pore of given length and width is derived analytically in the thermodynamic limit. As a result, the many body problem is reduced to solving the single transcendental equation. The pressures along and across the pore, distributions of contact distances along the pore, and disks' transverse coordinates are found analytically and presented in the whole density range for three different pore widths. The transition from the solidlike zigzag to the liquidlike state is found to be quite sharp in the density scale but shows no genuine singularity. This transition is quantitatively described by the distribution of zigzag's windows through which disks exchange their positions across the pore. The windowlike defects vanish only in the densely packed zigzag, which is in line with a continuous Kosterlitz-Thouless transition.
Collapse
|
9
|
Zhang Y, Godfrey MJ, Moore MA. Marginally jammed states of hard disks in a one-dimensional channel. Phys Rev E 2020; 102:042614. [PMID: 33212608 DOI: 10.1103/physreve.102.042614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
We have studied a class of marginally jammed states in a system of hard disks confined in a narrow channel-a quasi-one-dimensional system-whose exponents are not those predicted by theories valid in the infinite dimensional limit. The exponent γ which describes the distribution of small gaps takes the value 1 rather than the infinite dimensional value 0.41269⋯. Our work shows that there exist jammed states not found within the tiling approach of Ashwin and Bowles. The most dense of these marginal states is an unusual state of matter that is asymptotically crystalline.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M J Godfrey
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M A Moore
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
10
|
Martínez-Ratón Y, Velasco E. Highly confined mixtures of parallel hard squares: A density-functional-theory study. Phys Rev E 2020; 100:062604. [PMID: 31962445 DOI: 10.1103/physreve.100.062604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/06/2022]
Abstract
Using the fundamental-measure density-functional theory, we study theoretically the phase behavior of extremely confined mixtures of parallel hard squares in slit geometry. The pore width is chosen such that configurations consisting of two consecutive big squares, or three small squares, in the transverse direction, perpendicular to the walls, are forbidden. We analyze two different mixtures with edge lengths of species selected so as to allow or forbid one big plus one small square to fit into the channel. For the first mixture we obtain first-order transitions between symmetric and asymmetric packings of particles: Small and big squares are preferentially adsorbed at different walls. Asymmetric configurations are shown to lead to more efficient packing at finite pressures. We argue that the stability region of the asymmetric phase in the pressure-composition plane is bounded so that the symmetric phase is stable at low and very high pressure. For the second mixture, we observe strong demixing between phases which are rich in different species. Demixing occurs in the lateral direction, i.e., the dividing interface is perpendicular to the walls, and phases exhibit symmetric density profiles. The possible experimental realization of this behavior (which in practical terms is precluded by jamming) in strictly two-dimensional systems is discussed. Finally, the phase behavior of a mixture with periodic boundary conditions is analyzed and the differences and similarities between the latter and the confined system are discussed. We claim that, although exact calculations exclude the existence of true phase transitions in (1+ε)-dimensional systems, density-functional theory is still successful in describing packing properties of large clusters of particles.
Collapse
Affiliation(s)
- Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
11
|
Hu Y, Fu L, Charbonneau P. Correlation lengths in quasi-one-dimensional systems via transfer matrices. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1479543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Yi Hu
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Lin Fu
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Hicks CL, Wheatley MJ, Godfrey MJ, Moore MA. Gardner Transition in Physical Dimensions. PHYSICAL REVIEW LETTERS 2018; 120:225501. [PMID: 29906167 DOI: 10.1103/physrevlett.120.225501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/19/2018] [Indexed: 06/08/2023]
Abstract
The Gardner transition is the transition that at mean-field level separates a stable glass phase from a marginally stable phase. This transition has similarities with the de Almeida-Thouless transition of spin glasses. We have studied a well-understood problem, that of disks moving in a narrow channel, which shows many features usually associated with the Gardner transition. We show that some of these features are artifacts that arise when a disk escapes its local cage during the quench to higher densities. There is evidence that the Gardner transition becomes an avoided transition, in that the correlation length becomes quite large, of order 15 particle diameters, even in our quasi-one-dimensional system.
Collapse
Affiliation(s)
- C L Hicks
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M J Wheatley
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M J Godfrey
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M A Moore
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
13
|
Hu Y, Charbonneau P. Clustering and assembly dynamics of a one-dimensional microphase former. SOFT MATTER 2018; 14:4101-4109. [PMID: 29578236 DOI: 10.1039/c8sm00315g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Both ordered and disordered microphases ubiquitously form in suspensions of particles that interact through competing short-range attraction and long-range repulsion (SALR). While ordered microphases are more appealing materials targets, understanding the rich structural and dynamical properties of their disordered counterparts is essential to controlling their mesoscale assembly. Here, we study the disordered regime of a one-dimensional (1D) SALR model, whose simplicity enables detailed analysis by transfer matrices and Monte Carlo simulations. We first characterize the signature of the clustering process on macroscopic observables, and then assess the equilibration dynamics of various simulation algorithms. We notably find that cluster moves markedly accelerate the mixing time, but that event chains are of limited help in the clustering regime. These insights will inspire further study of three-dimensional microphase formers.
Collapse
Affiliation(s)
- Yi Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
14
|
Gurin P, Varga S, Martínez-Ratón Y, Velasco E. Positional ordering of hard adsorbate particles in tubular nanopores. Phys Rev E 2018; 97:052606. [PMID: 29906934 DOI: 10.1103/physreve.97.052606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The phase behavior and structural properties of a monolayer of hard particles is examined in such a confinement where the adsorbed particles are constrained to the surface of a narrow hard cylindrical pore. The diameter of the pore is chosen such that only first- and second-neighbor interactions occur between the hard particles. The transfer operator method of [Percus and Zhang, Mol. Phys. 69, 347 (1990)MOPHAM0026-897610.1080/00268979000100241] is reformulated to obtain information about the structure of the monolayer. We have found that a true phase transition is not possible in the examined range of pore diameters. The monolayer of hard spheres undergoes a structural change from fluidlike order to a zigzaglike solid one with increasing surface density. The case of hard cylinders is different in the sense that a layering takes place continuously between a low-density one-row and a high-density two-row monolayer. Our results reveal a clear discrepancy with classical density functional theories, which do not distinguish smecticlike ordering in bulk from that in narrow periodic pores.
Collapse
Affiliation(s)
- Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
15
|
Fu L, Bian C, Shields CW, Cruz DF, López GP, Charbonneau P. Assembly of hard spheres in a cylinder: a computational and experimental study. SOFT MATTER 2017; 13:3296-3306. [PMID: 28405662 DOI: 10.1039/c7sm00316a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hard spheres are an important benchmark of our understanding of natural and synthetic systems. In this work, colloidal experiments and Monte Carlo simulations examine the equilibrium and out-of-equilibrium assembly of hard spheres of diameter σ within cylinders of diameter σ≤D≤ 2.82σ. Although phase transitions formally do not exist in such systems, marked structural crossovers can nonetheless be observed. Over this range of D, we find in simulations that structural crossovers echo the structural changes in the sequence of densest packings. We also observe that the out-of-equilibrium self-assembly depends on the compression rate. Slow compression approximates equilibrium results, while fast compression can skip intermediate structures. Crossovers for which no continuous line-slip exists are found to be dynamically unfavorable, which is the main source of this difference. Results from colloidal sedimentation experiments at low diffusion rate are found to be consistent with the results of fast compressions, as long as appropriate boundary conditions are used.
Collapse
Affiliation(s)
- Lin Fu
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Gurin P, Varga S, González-Pinto M, Martínez-Ratón Y, Velasco E. Ordering of hard rectangles in strong confinement. J Chem Phys 2017; 146:134503. [DOI: 10.1063/1.4979497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Miguel González-Pinto
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganés, Madrid, Spain
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
17
|
Gurin P, Odriozola G, Varga S. Critical behavior of hard squares in strong confinement. Phys Rev E 2017; 95:042610. [PMID: 28505711 DOI: 10.1103/physreve.95.042610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 06/07/2023]
Abstract
We examine the phase behavior of a quasi-one-dimensional system of hard squares with side-length σ, where the particles are confined between two parallel walls and only nearest-neighbor interactions occur. As in our previous work [Gurin, Varga, and Odriozola, Phys. Rev. E 94, 050603 (2016)]2470-004510.1103/PhysRevE.94.050603, the transfer operator method is used, but here we impose a restricted orientation and position approximation to yield an analytic description of the physical properties. This allows us to study the parallel fluid-like to zigzag solid-like structural transition, where the compressibility and heat capacity peaks sharpen and get higher as H→H_{c}=2sqrt[2]-1≈1.8284 and p→p_{c}=∞. Here H is the width of the channel measured in σ units and p is the pressure. We have found that this structural change becomes critical at the (p_{c},H_{c}) point. The obtained critical exponents belong to the universality class of the one-dimensional Ising model. We believe this behavior holds for the unrestricted orientational and positional case.
Collapse
Affiliation(s)
- Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Gerardo Odriozola
- Area de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 CD México, Mexico
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|
18
|
Gurin P, Varga S, Odriozola G. Anomalous structural transition of confined hard squares. Phys Rev E 2016; 94:050603. [PMID: 27967070 DOI: 10.1103/physreve.94.050603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.
Collapse
Affiliation(s)
- Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Gerardo Odriozola
- Area de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 CD México, Mexico
| |
Collapse
|
19
|
González-Pinto M, Martínez-Ratón Y, Varga S, Gurin P, Velasco E. Phase behaviour and correlations of parallel hard squares: from highly confined to bulk systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244002. [PMID: 27115832 DOI: 10.1088/0953-8984/28/24/244002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We study a fluid of two-dimensional parallel hard squares in bulk and under confinement in channels, with the aim of evaluating the performance of fundamental-measure theory (FMT). To this purpose, we first analyse the phase behaviour of the bulk system using FMT and Percus-Yevick (PY) theory, and compare the results with molecular dynamics and Monte Carlo simulations. In a second step, we study the confined system and check the results against those obtained from the transfer matrix method and from our own Monte Carlo simulations. Squares are confined to channels with parallel walls at angles of 0° or 45° relative to the diagonals of the parallel hard squares, respectively, which allows for an assessment of the effect of the external-potential symmetry on the fluid structural properties. In general FMT overestimates bulk correlations, predicting the existence of a columnar phase (absent in simulations) prior to crystallization. The equation of state predicted by FMT compares well with simulations, although the PY approach with the virial route is better in some range of packing fractions. The FMT is highly accurate for the structure and correlations of the confined fluid due to the dimensional crossover property fulfilled by the theory. Both density profiles and equations of state of the confined system are accurately predicted by the theory. The highly non-uniform pair correlations inside the channel are also very well described by FMT.
Collapse
Affiliation(s)
- Miguel González-Pinto
- Departamento de Física Teórica de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Robinson JF, Godfrey MJ, Moore MA. Glasslike behavior of a hard-disk fluid confined to a narrow channel. Phys Rev E 2016; 93:032101. [PMID: 27078286 DOI: 10.1103/physreve.93.032101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 06/05/2023]
Abstract
Disks moving in a narrow channel have many features in common with the glassy behavior of hard spheres in three dimensions. In this paper we study the caging behavior of the disks that sets in at characteristic packing fraction ϕ(d). Four-point overlap functions similar to those studied when investigating dynamical heterogeneities have been determined from event-driven molecular dynamics simulations and the time-dependent dynamical length scale has been extracted from them. The dynamical length scale increases with time and, on the equilibration time scale, it is proportional to the static length scale associated with the zigzag ordering in the system, which grows rapidly above ϕ(d). The structural features responsible for the onset of caging and the glassy behavior are easy to identify as they show up in the structure factor, which we have determined exactly from the transfer-matrix approach.
Collapse
Affiliation(s)
- J F Robinson
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M J Godfrey
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M A Moore
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
21
|
Gurin P, Varga S. Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares. J Chem Phys 2015; 142:224503. [DOI: 10.1063/1.4922154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|