1
|
Igoshin OA, Kolomeisky AB, Makarov DE. Uncovering dissipation from coarse observables: A case study of a random walk with unobserved internal states. J Chem Phys 2025; 162:034111. [PMID: 39812255 DOI: 10.1063/5.0247331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Inferring underlying microscopic dynamics from low-dimensional experimental signals is a central problem in physics, chemistry, and biology. As a trade-off between molecular complexity and the low-dimensional nature of experimental data, mesoscopic descriptions such as the Markovian master equation are commonly used. The states in such descriptions usually include multiple microscopic states, and the ensuing coarse-grained dynamics are generally non-Markovian. It is frequently assumed that such dynamics can nevertheless be described as a Markov process because of the timescale separation between slow transitions from one observed coarse state to another and the fast interconversion within such states. Here, we use a simple model of a molecular motor with unobserved internal states to highlight that (1) dissipation estimated from the observed coarse dynamics may significantly underestimate microscopic dissipation even in the presence of timescale separation and even when mesoscopic states do not contain dissipative cycles and (2) timescale separation is not necessarily required for the Markov approximation to give the exact entropy production, provided that certain constraints on the microscopic rates are satisfied. When the Markov approximation is inadequate, we discuss whether including memory effects can improve the estimate. Surprisingly, when we do so in a "model-free" way by computing the Kullback-Leibler divergence between the observed probability distributions of forward trajectories and their time reverses, this leads to poorer estimates of entropy production. Finally, we argue that alternative approaches, such as hidden Markov models, may uncover the dissipative nature of the microscopic dynamics even when the observed coarse trajectories are completely time-reversible.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Bioengineering, Department of Chemistry, Department of Biosciences, and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
2
|
Leighton MP, Sivak DA. Inferring Subsystem Efficiencies in Bipartite Molecular Machines. PHYSICAL REVIEW LETTERS 2023; 130:178401. [PMID: 37172234 DOI: 10.1103/physrevlett.130.178401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
Molecular machines composed of coupled subsystems transduce free energy between different external reservoirs, in the process internally transducing energy and information. While subsystem efficiencies of these molecular machines have been measured in isolation, less is known about how they behave in their natural setting when coupled together and acting in concert. Here, we derive upper and lower bounds on the subsystem efficiencies of a bipartite molecular machine. We demonstrate their utility by estimating the efficiencies of the F_{o} and F_{1} subunits of ATP synthase and that of kinesin pulling a diffusive cargo.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
3
|
Ertel B, van der Meer J, Seifert U. Waiting Time Distributions in Hybrid Models of Motor-Bead Assays: A Concept and Tool for Inference. Int J Mol Sci 2023; 24:7610. [PMID: 37108771 PMCID: PMC10145242 DOI: 10.3390/ijms24087610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
In single-molecule experiments, the dynamics of molecular motors are often observed indirectly by measuring the trajectory of an attached bead in a motor-bead assay. In this work, we propose a method to extract the step size and stalling force for a molecular motor without relying on external control parameters. We discuss this method for a generic hybrid model that describes bead and motor via continuous and discrete degrees of freedom, respectively. Our deductions are solely based on the observation of waiting times and transition statistics of the observable bead trajectory. Thus, the method is non-invasive, operationally accessible in experiments and can, in principle, be applied to any model describing the dynamics of molecular motors. We briefly discuss the relation of our results to recent advances in stochastic thermodynamics on inference from observable transitions. Our results are confirmed by extensive numerical simulations for parameters values of an experimentally realized F1-ATPase assay.
Collapse
Affiliation(s)
| | | | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany; (B.E.)
| |
Collapse
|
4
|
Xie P. Effect of varying load in moving period of a step on dynamics of molecular motors. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:28. [PMID: 35318549 DOI: 10.1140/epje/s10189-022-00181-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
During the processive stepping of a molecular motor on its polar track, a step consists of a long dwell period and a very short moving period. In single molecule optical trapping experiments to determine the load dependence of the motor dynamics, although the motor experiences a constant load during the dwell period, it experiences a varying load during the moving period. However, in previous theoretical studies to explain the single molecule optical trapping data, it was simply assumed that the motor experiences a constant load during both the dwell period and the following moving period. Thus, an important but unclear issue is whether the assumption is appropriate in the theoretical studies. Here, we take kinesin and myosin-V as examples to study theoretically the motor dynamics with the consideration of the varying load during the moving period and compare with that with the assumption of the constant load. The studies show that in the optical trapping experiments employed in the literature, for the kinesin with a small step size of about 8 nm it is a good approximation to make the theoretical studies by assuming that the motor experiences the constant load during the moving period. For the myosin-V with a large step size of about 36 nm, there are small but noticeable deviations of the results obtained by considering that the motor experiences the varying load during the moving period from those by assuming that the motor experiences the constant load. .
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
Speck T. Modeling of biomolecular machines in non-equilibrium steady states. J Chem Phys 2021; 155:230901. [PMID: 34937348 DOI: 10.1063/5.0070922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Numerical computations have become a pillar of all modern quantitative sciences. Any computation involves modeling-even if often this step is not made explicit-and any model has to neglect details while still being physically accurate. Equilibrium statistical mechanics guides both the development of models and numerical methods for dynamics obeying detailed balance. For systems driven away from thermal equilibrium, such a universal theoretical framework is missing. For a restricted class of driven systems governed by Markov dynamics and local detailed balance, stochastic thermodynamics has evolved to fill this gap and to provide fundamental constraints and guiding principles. The next step is to advance stochastic thermodynamics from simple model systems to complex systems with tens of thousands or even millions of degrees of freedom. Biomolecules operating in the presence of chemical gradients and mechanical forces are a prime example for this challenge. In this Perspective, we give an introduction to isothermal stochastic thermodynamics geared toward the systematic multiscale modeling of the conformational dynamics of biomolecular and synthetic machines, and we outline some of the open challenges.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
6
|
Blackwell R, Jung D, Bukenberger M, Smith AS. The Impact of Rate Formulations on Stochastic Molecular Motor Dynamics. Sci Rep 2019; 9:18373. [PMID: 31804523 PMCID: PMC6895049 DOI: 10.1038/s41598-019-54344-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Cells are complex structures which require considerable amounts of organization via transport of large intracellular cargo. While passive diffusion is often sufficiently fast for the transport of smaller cargo, active transport is necessary to organize large structures on the short timescales necessary for biological function. The main mechanism of this transport is by cargo attachment to motors which walk in a directed fashion along intracellular filaments. There are a number of models which seek to describe the motion of motors with attached cargo, from detailed microscopic to coarse phenomenological descriptions. We focus on the intermediate-detailed discrete stochastic hopping models, and explore how cargo transport changes depending on the number of motors, motor interaction, system constraints and rate formulations, which are derived from common thermodynamic assumptions. We find that, despite obeying the same detailed balance constraint, the choice of rate formulation considerably affects the characteristics of the overall motion of the system, with one rate formulation exhibiting novel behavior of loaded motor groups moving faster than a single unloaded motor.
Collapse
Affiliation(s)
- R Blackwell
- PULS group, Physics Department and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058, Erlangen, Germany
| | - D Jung
- PULS group, Physics Department and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058, Erlangen, Germany
| | - M Bukenberger
- PULS group, Physics Department and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058, Erlangen, Germany
| | - A-S Smith
- PULS group, Physics Department and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058, Erlangen, Germany. .,Group for Computational Life Sciences, Division of Physical Chemistry, Insitut Rūder Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Abstract
Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics , University of California, San Diego , La Jolla , California 92093 , United States
| | - David A Sivak
- Department of Physics , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
8
|
Ariga T, Tomishige M, Mizuno D. Nonequilibrium Energetics of Molecular Motor Kinesin. PHYSICAL REVIEW LETTERS 2018; 121:218101. [PMID: 30517811 DOI: 10.1103/physrevlett.121.218101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/18/2018] [Indexed: 06/09/2023]
Abstract
Nonequilibrium energetics of single molecule translational motor kinesin was investigated by measuring heat dissipation from the violation of the fluctuation-response relation of a probe attached to the motor using optical tweezers. The sum of the dissipation and work did not amount to the input free energy change, indicating large hidden dissipation exists. Possible sources of the hidden dissipation were explored by analyzing the Langevin dynamics of the probe, which incorporates the two-state Markov stepper as a kinesin model. We conclude that internal dissipation is dominant.
Collapse
Affiliation(s)
- Takayuki Ariga
- Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| | - Michio Tomishige
- Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Nakayama Y, Kawaguchi K, Nakagawa N. Unattainability of Carnot efficiency in thermal motors: Coarse graining and entropy production of Feynman-Smoluchowski ratchets. Phys Rev E 2018; 98:022102. [PMID: 30253614 DOI: 10.1103/physreve.98.022102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 11/07/2022]
Abstract
We revisit and analyze the thermodynamic efficiency of the Feynman-Smoluchowski (FS) ratchet, a classical thought experiment describing an autonomous heat-work converter. Starting from the full kinetics of the FS ratchet and deriving the exact forms of the hidden dissipations resulting from coarse graining, we restate the historical controversy over its thermodynamic efficiency. The existence of hidden entropy productions implies that the standard framework of stochastic thermodynamics applied to the coarse-grained descriptions fails in capturing the dissipative feature of the system. In response to this problem, we explore an extended framework of stochastic thermodynamics to reconstruct the hidden entropy production from the coarse-grained dynamics. The approach serves as a key example of how we can systematically address the problem of thermodynamic efficiency in a multivariable fluctuating nonequilibrium system.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| | - Kyogo Kawaguchi
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoko Nakagawa
- Department of Physics, Ibaraki University, Mito 310-8512, Japan
| |
Collapse
|
10
|
Wang SW. Inferring energy dissipation from violation of the fluctuation-dissipation theorem. Phys Rev E 2018; 97:052125. [PMID: 29906903 DOI: 10.1103/physreve.97.052125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 06/08/2023]
Abstract
The Harada-Sasa equality elegantly connects the energy dissipation rate of a moving object with its measurable violation of the Fluctuation-Dissipation Theorem (FDT). Although proven for Langevin processes, its validity remains unclear for discrete Markov systems whose forward and backward transition rates respond asymmetrically to external perturbation. A typical example is a motor protein called kinesin. Here we show generally that the FDT violation persists surprisingly in the high-frequency limit due to the asymmetry, resulting in a divergent FDT violation integral and thus a complete breakdown of the Harada-Sasa equality. A renormalized FDT violation integral still well predicts the dissipation rate when each discrete transition produces a small entropy in the environment. Our study also suggests a way to infer this perturbation asymmetry based on the measurable high-frequency-limit FDT violation.
Collapse
Affiliation(s)
- Shou-Wen Wang
- Beijing Computational Science Research Center, Beijing, 100094, China and Department of Engineering Physics, Tsinghua University, Beijing, 100086, China
| |
Collapse
|
11
|
Oppenheimer N, Stone HA. Effect of Hydrodynamic Interactions on Reaction Rates in Membranes. Biophys J 2017; 113:440-447. [PMID: 28746854 DOI: 10.1016/j.bpj.2017.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/04/2017] [Accepted: 06/07/2017] [Indexed: 11/18/2022] Open
Abstract
The Brownian motion of two particles in three dimensions serves as a model for predicting the diffusion-limited reaction rate, as first discussed by von Smoluchowski. Deutch and Felderhof extended the calculation to account for hydrodynamic interactions between the particles and the target, which results in a reduction of the rate coefficient by about half. Many chemical reactions take place in quasi-two-dimensional systems, such as on the membrane or surface of a cell. We perform a Smoluchowski-like calculation in a quasi-two-dimensional geometry, i.e., a membrane surrounded by fluid, and account for hydrodynamic interactions between the particles. We show that rate coefficients are reduced relative to the case of no interactions. The reduction is more pronounced than the three-dimensional case due to the long-range nature of two-dimensional flows.
Collapse
Affiliation(s)
- Naomi Oppenheimer
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
12
|
Bhat D, Gopalakrishnan M. Transport of organelles by elastically coupled motor proteins. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:71. [PMID: 27439854 DOI: 10.1140/epje/i2016-16071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by including elastic motor-cargo coupling, but either restrict the number of motors and/or use purely phenomenological forms for force-dependent hopping rates. Here, we study a generic model in which N motors are elastically coupled to a cargo, which itself is subjected to thermal noise in the cytoplasm and to an additional external applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy of elastic stretching. With these assumptions, an (N + 1) -variable master equation is constructed for dynamics of the motor-cargo complex. By expanding the hopping rates to linear order in fluctuations in motor positions, we obtain a linear Fokker-Planck equation. The deterministic equations governing the average quantities are separated out and explicit analytical expressions are obtained for the mean velocity and diffusion coefficient of the cargo. We also study the statistical features of the force experienced by an individual motor and quantitatively characterize the load-sharing among the cargo-bound motors. The mean cargo velocity and the effective diffusion coefficient are found to be decreasing functions of the stiffness. While the increase in the number of motors N does not increase the velocity substantially, it decreases the effective diffusion coefficient which falls as 1/N asymptotically. We further show that the cargo-bound motors share the force exerted on the cargo equally only in the limit of vanishing elastic stiffness; as stiffness is increased, deviations from equal load sharing are observed. Numerical simulations agree with our analytical results where expected. Interestingly, we find in simulations that the stall force of a cargo elastically coupled to motors is independent of the stiffness of the linkers.
Collapse
Affiliation(s)
- Deepak Bhat
- Department of Physics, Indian Institute of Technology Madras, 600036, Chennai, India.
| | - Manoj Gopalakrishnan
- Department of Physics, Indian Institute of Technology Madras, 600036, Chennai, India
| |
Collapse
|
13
|
Wagoner JA, Dill KA. Molecular Motors: Power Strokes Outperform Brownian Ratchets. J Phys Chem B 2016; 120:6327-36. [DOI: 10.1021/acs.jpcb.6b02776] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jason A. Wagoner
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ken A. Dill
- Laufer
Center for Physical and Quantitative Biology, and Departments of Physics
and Astronomy and Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
14
|
Bouzat S. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations. Phys Rev E 2016; 93:012401. [PMID: 26871095 DOI: 10.1103/physreve.93.012401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 01/03/2023]
Abstract
One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.
Collapse
Affiliation(s)
- Sebastián Bouzat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), (8400) Bariloche, Río Negro, Argentina
| |
Collapse
|