1
|
Multi-fractal detrended cross-correlation heatmaps for time series analysis. Sci Rep 2022; 12:21655. [PMID: 36522406 PMCID: PMC9755263 DOI: 10.1038/s41598-022-26207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Complex systems in biology, climatology, medicine, and economy hold emergent properties such as non-linearity, adaptation, and self-organization. These emergent attributes can derive from large-scale relationships, connections, and interactive behavior despite not being apparent from their isolated components. It is possible to better comprehend complex systems by analyzing cross-correlations between time series. However, the accumulation of non-linear processes induces multiscale structures, therefore, a spectrum of power-law exponents (the fractal dimension) and distinct cyclical patterns. We propose the Multifractal detrended cross-correlation heatmaps (MF-DCCHM) based on the DCCA cross-correlation coefficients with sliding boxes, a systematic approach capable of mapping the relationships between fluctuations of signals on different scales and regimes. The MF-DCCHM uses the integrated series of magnitudes, sliding boxes with sizes of up to 5% of the entire series, and an average of DCCA coefficients on top of the heatmaps for the local analysis. The heatmaps have shown the same cyclical frequencies from the spectral analysis across different multifractal regimes. Our dataset is composed of sales and inventory from the Brazilian automotive sector and macroeconomic descriptors, namely the Gross Domestic Product (GDP) per capita, Nominal Exchange Rate (NER), and the Nominal Interest Rate (NIR) from the Central Bank of Brazil. Our results indicate cross-correlated patterns that can be directly compared with the power-law spectra for multiple regimes. We have also identified cyclical patterns of high intensities that coincide with the Brazilian presidential elections. The MF-DCCHM uncovers non-explicit cyclic patterns, quantifies the relations of two non-stationary signals (noise effect removed), and has outstanding potential for mapping cross-regime patterns in multiple domains.
Collapse
|
2
|
Wang F, Chen Y. Detrending-moving-average-based multivariate regression model for nonstationary series. Phys Rev E 2022; 105:054129. [PMID: 35706188 DOI: 10.1103/physreve.105.054129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Dependency between a response variable and the explanatory variables is a relationship of universal concern in various real-world problems. Multivariate linear regression (MLR) is a well-known method to focus on this issue. However, it is limited to dealing with stationary variables. In this work, we develop a MLR framework based on detrending moving average (DMA) analysis to reveal the actual dependency among variables with nonstationary measures. The DMA-based MLR can generate multiscale regression coefficients, which characterize different dependent behavior at different timescales. Artificial tests show that the DMA-MLR model can successfully resist the impact of trends on the studied series and produce more accurate regression coefficients with multiscale. Furthermore, some scale-dependent statistics are developed to deduce some important relationships in three typical DMA-based MLR models, which help us to deeply understand the DMA-MLR models in theory. The application of the proposed DMA-MLR framework to Beijing's air quality index system demonstrates that fine particulate matter with diameter ≤2.5μm (PM_{2.5}) is the dominant pollutant affecting the air quality of Beijing in recent years.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, China
| | - Yuming Chen
- Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
3
|
Fan Q, Wang F. Detrending-moving-average-based bivariate regression estimator. Phys Rev E 2020; 102:012218. [PMID: 32794900 DOI: 10.1103/physreve.102.012218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/04/2020] [Indexed: 11/07/2022]
Abstract
In this work, a detrending-moving-average- (DMA) based bivariate linear regression analysis method is proposed. The method is combination of detrended moving average analysis and standard regression methodology, which allows us to estimate the scale-dependent regression coefficients for nonstationary and power-law correlated time series. By using synthetic simulations with error of estimation for different position parameter θ of detrending windows, we test our DMA-based bivariate linear regression algorithm and find that the centered detrending technique (θ=0.5) is of best performance, which provides the most accurate estimates. In addition, the estimated regression coefficients are in good agreement with the theoretical values. The center DMA-based bivariate linear regression estimator is applied to analyze the return series of Shanghai stock exchange composite index, the Hong Kong Hangseng index and the NIKKEI 225 index. The dependence among the Asian stock market across timescales is confirmed. Furthermore, two statistics based on the scale-dependent t statistic and the partial detrending-moving-average cross-correlation coefficient are used to demonstrate the significance of the dependence. The scale-dependent evaluation parameters also show that the DMA-based bivariate regression model can provide rich information than standard regression analysis.
Collapse
Affiliation(s)
- Qingju Fan
- Department of Statistics, School of Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Fang Wang
- College of Information and Telligence/Agricultural Mathematical Modeling and Data Processing Center, Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|
4
|
Cao T, Wang Q, Liu D, Sun J, Bai O. Resting state EEG-based sudden pain recognition method and experimental study. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Matić Z, Platiša MM, Kalauzi A, Bojić T. Slow 0.1 Hz Breathing and Body Posture Induced Perturbations of RRI and Respiratory Signal Complexity and Cardiorespiratory Coupling. Front Physiol 2020; 11:24. [PMID: 32132926 PMCID: PMC7040454 DOI: 10.3389/fphys.2020.00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: We explored the physiological background of the non-linear operating mode of cardiorespiratory oscillators as the fundamental question of cardiorespiratory homeodynamics and as a prerequisite for the understanding of neurocardiovascular diseases. We investigated 20 healthy human subjects for changes using electrocardiac RR interval (RRI) and respiratory signal (Resp) Detrended Fluctuation Analysis (DFA, α1RRI, α2RRI, α1Resp, α2Resp), Multiple Scaling Entropy (MSERRI1-4, MSERRI5-10, MSEResp1-4, MSEResp5-10), spectral coherence (CohRRI-Resp), cross DFA (ρ1 and ρ2) and cross MSE (XMSE1-4 and XMSE5-10) indices in four physiological conditions: supine with spontaneous breathing, standing with spontaneous breathing, supine with 0.1 Hz breathing and standing with 0.1 Hz breathing. Main results: Standing is primarily characterized by the change of RRI parameters, insensitivity to change with respiratory parameters, decrease of CohRRI-Resp and insensitivity to change of in ρ1, ρ2, XMSE1-4, and XMSE5-10. Slow breathing in supine position was characterized by the change of the linear and non-linear parameters of both signals, reflecting the dominant vagal RRI modulation and the impact of slow 0.1 Hz breathing on Resp parameters. CohRRI-Resp did not change with respect to supine position, while ρ1 increased. Slow breathing in standing reflected the qualitatively specific state of autonomic regulation with striking impact on both cardiac and respiratory parameters, with specific patterns of cardiorespiratory coupling. Significance: Our results show that cardiac and respiratory short term and long term complexity parameters have different, state dependent patterns. Sympathovagal non-linear interactions are dependent on the pattern of their activation, having different scaling properties when individually activated with respect to the state of their joint activation. All investigated states induced a change of α1 vs. α2 relationship, which can be accurately expressed by the proposed measure-inter-fractal angle θ. Short scale (α1 vs. MSE1-4) and long scale (α2 vs. MSE5-10) complexity measures had reciprocal interrelation in standing with 0.1 Hz breathing, with specific cardiorespiratory coupling pattern (ρ1 vs. XMSE1-4). These results support the hypothesis of hierarchical organization of cardiorespiratory complexity mechanisms and their recruitment in ascendant manner with respect to the increase of behavioral challenge complexity. Specific and comprehensive cardiorespiratory regulation in standing with 0.1 Hz breathing suggests this state as the potentially most beneficial maneuver for cardiorespiratory conditioning.
Collapse
Affiliation(s)
- Zoran Matić
- Biomedical Engineering and Technology, University of Belgrade, Belgrade, Serbia
| | - Mirjana M. Platiša
- Faculty of Medicine, Institute of Biophysics, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Tijana Bojić
- Laboratory for Radiobiology and Molecular Genetics-080, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Ge Y, Wu H. Prediction of corn price fluctuation based on multiple linear regression analysis model under big data. Neural Comput Appl 2019. [DOI: 10.1007/s00521-018-03970-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
|
8
|
A DFA-based bivariate regression model for estimating the dependence of PM2.5 among neighbouring cities. Sci Rep 2018; 8:7475. [PMID: 29748597 PMCID: PMC5945840 DOI: 10.1038/s41598-018-25822-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/30/2018] [Indexed: 11/08/2022] Open
Abstract
On the basis of detrended fluctuation analysis (DFA), we propose a new bivariate linear regression model. This new model provides estimators of multi-scale regression coefficients to measure the dependence between variables and corresponding variables of interest with multi-scales. Numerical tests are performed to illustrate that the proposed DFA-bsaed regression estimators are capable of accurately depicting the dependence between the variables of interest and can be used to identify different dependence at different time scales. We apply this model to analyze the PM2.5 series of three adjacent cities (Beijing, Tianjin, and Baoding) in Northern China. The estimated regression coefficients confirmed the dependence of PM2.5 among the three cities and illustrated that each city has different influence on the others at different seasons and at different time scales. Two statistics based on the scale-dependent t-statistic and the partial detrended cross-correlation coefficient are used to demonstrate the significance of the dependence. Three new scale-dependent evaluation indices show that the new DFA-based bivariate regression model can provide rich information on studied variables.
Collapse
|
9
|
Xu HC, Gu GF, Zhou WX. Direct determination approach for the multifractal detrending moving average analysis. Phys Rev E 2017; 96:052201. [PMID: 29347787 DOI: 10.1103/physreve.96.052201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 06/07/2023]
Abstract
In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent τ(q) is related to the partition function and the multifractal spectrum f(α) can be directly determined. The performances of the direct determination approach and the traditional approach of the MF-DMA are compared based on three synthetic multifractal and monofractal measures generated from the one-dimensional p-model, the two-dimensional p-model, and the fractional Brownian motions. We find that both approaches have comparable performances to unveil the fractal and multifractal nature. In other words, without loss of accuracy, the multifractal spectrum f(α) can be directly determined using the new approach with less computation cost. We also apply the new MF-DMA approach to the volatility time series of stock prices and confirm the presence of multifractality.
Collapse
Affiliation(s)
- Hai-Chuan Xu
- Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China
- Department of Finance, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Feng Gu
- Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China
- Department of Finance, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Xing Zhou
- Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China
- Department of Finance, East China University of Science and Technology, Shanghai 200237, China
- School of Science, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Liu Z, Sun J, Zhang Y, Rolfe P. Sleep staging from the EEG signal using multi-domain feature extraction. Biomed Signal Process Control 2016. [DOI: 10.1016/j.bspc.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Xiong H, Shang P. Weighted multifractal cross-correlation analysis based on Shannon entropy. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2016; 30:268-283. [PMID: 32288420 PMCID: PMC7128505 DOI: 10.1016/j.cnsns.2015.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/16/2015] [Accepted: 06/27/2015] [Indexed: 05/12/2023]
Abstract
In this paper, we propose a modification of multifractal cross-correlation analysis based on statistical moments (MFSMXA) method, called weighted MFSMXA method based on Shannon entropy (W-MFSMXA), to investigate cross-correlations and cross-multifractality between time series. Robustness of this method is verified by numerical experiments with both artificial and stock returns series. Results show that the proposed W-MFSMXA method not only keep the multifractal structure unchanged, but contains more significant information of series compared to the previous MFSMXA method. Furthermore, analytic formulas of the binomial multifractal model are generated for W-MFSMXA. Theoretical analysis and finite-size effect test demonstrate that W-MFSMXA slightly outperforms MFSMXA for relatively shorter series. We further generate the scaling exponent ratio to describe the relation of two methods, whose profile is found approximating a centrosymmetric hyperbola. Cross-multifractality is found in returns series but then destroyed after being shuffled as a consequence of the removed long memory in separate series.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, PR China
| | | |
Collapse
|
12
|
Kwapień J, Oświęcimka P, Drożdż S. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052815. [PMID: 26651752 DOI: 10.1103/physreve.92.052815] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 06/05/2023]
Abstract
The detrended cross-correlation coefficient ρ(DCCA) has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρ(DCCA) works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρ(DCCA) that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρ(q) not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρ(q) works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q-dependent counterpart of the correlation matrices and then to the network representation.
Collapse
Affiliation(s)
- Jarosław Kwapień
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Paweł Oświęcimka
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Stanisław Drożdż
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
- Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, Kraków, Poland
| |
Collapse
|
13
|
Qian XY, Liu YM, Jiang ZQ, Podobnik B, Zhou WX, Stanley HE. Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062816. [PMID: 26172763 DOI: 10.1103/physreve.91.062816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 06/04/2023]
Abstract
When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails.
Collapse
Affiliation(s)
- Xi-Yuan Qian
- School of Science, East China University of Science and Technology, Shanghai 200237, China
- Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China
| | - Ya-Min Liu
- School of Science, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Qiang Jiang
- Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China
- School of Business, East China University of Science and Technology, Shanghai 200237, China
| | - Boris Podobnik
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Faculty of Civil Engineering, University of Rijeka, 51000 Rijeka, Croatia
- Zagreb School of Economics and Management, 10000 Zagreb, Croatia
- Faculty of Economics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Wei-Xing Zhou
- School of Science, East China University of Science and Technology, Shanghai 200237, China
- Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China
- School of Business, East China University of Science and Technology, Shanghai 200237, China
| | - H Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|