1
|
Chen Z, Zheng Z, Xu C. Synchronization transitions in phase oscillator populations with partial adaptive coupling. CHAOS (WOODBURY, N.Y.) 2024; 34:063106. [PMID: 38829794 DOI: 10.1063/5.0211849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
The adaptation underlying many realistic processes plays a pivotal role in shaping the collective dynamics of diverse systems. Here, we untangle the generic conditions for synchronization transitions in a system of coupled phase oscillators incorporating the adaptive scheme encoded by the feedback between the coupling and the order parameter via a power-law function with different weights. We mathematically argue that, in the subcritical and supercritical correlation scenarios, there exists no critical adaptive fraction for synchronization transitions converting from the first (second)-order to the second (first)-order. In contrast to the synchronization transitions previously deemed, the explosive and continuous phase transitions take place in the corresponding regions as long as the adaptive fraction is nonzero, respectively. Nevertheless, we uncover that, at the critical correlation, the routes toward synchronization depend crucially on the relative adaptive weights. In particular, we unveil that the emergence of a range of interrelated scaling behaviors of the order parameter near criticality, manifesting the subcritical and supercritical bifurcations, are responsible for various observed phase transitions. Our work, thus, provides profound insights for understanding the dynamical nature of phase transitions, and for better controlling and manipulating synchronization transitions in networked systems with adaptation.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
| | - Zhigang Zheng
- Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Can Xu
- Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
2
|
Muthanna YA, Jafri HH. Explosive transitions in coupled Lorenz oscillators. Phys Rev E 2024; 109:054206. [PMID: 38907430 DOI: 10.1103/physreve.109.054206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 06/24/2024]
Abstract
We study the transition to synchronization in an ensemble of chaotic oscillators that are interacting on a star network. These oscillators possess an invariant symmetry and we study emergent behavior by introducing the timescale variations in the dynamics of the nodes and the hub. If the coupling preserves the symmetry, the ensemble exhibits consecutive explosive transitions, each one associated with a hysteresis. The first transition is the explosive synchronization from a desynchronized state to a synchronized state which occurs discontinuously with the formation of intermediate clusters. These clusters appear because of the driving-induced multistability and the resulting attractors exhibit intermittent synchrony (antisynchrony). The second transition is the explosive death that occurs as a result of stabilization of the stable fixed points. However, if the symmetry is not preserved, the system again makes a first-order transition from an oscillatory state to death, namely, an explosive death. These transitions are studied with the help of the master stability functions, Lyapunov exponents, and the stability analysis.
Collapse
Affiliation(s)
- Yusra Ahmed Muthanna
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
- Physics Department, Taiz University, Taiz 6803, Yemen
| | - Haider Hasan Jafri
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
| |
Collapse
|
3
|
Zheng Z, Xu C, Fan J, Liu M, Chen X. Order parameter dynamics in complex systems: From models to data. CHAOS (WOODBURY, N.Y.) 2024; 34:022101. [PMID: 38341762 DOI: 10.1063/5.0180340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 02/13/2024]
Abstract
Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.
Collapse
Affiliation(s)
- Zhigang Zheng
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Can Xu
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingfang Fan
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Maoxin Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Urdapilleta E. Transition to synchronization in heterogeneous inhibitory neural networks with structured synapses. CHAOS (WOODBURY, N.Y.) 2021; 31:033151. [PMID: 33810717 DOI: 10.1063/5.0038896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Inhibitory neurons form an extensive network involved in the development of different rhythms in the cerebral cortex. A transition from an incoherent state, where all inhibitory neurons fire unrelated to each other, to a synchronized or locked state, where all or most neurons define a tight firing pattern, is maybe the most salient process to analyze when considering neuronal rhythms. In this work, we analyzed whether different patterns of effective synaptic connectivity may support a first-order-like transition in this path to synchronization. Such an "explosive" phenomenon may be relevant in neural processes, as normal cognitive processing in different tasks and some neurological disorders manifest an increased power in many neuronal rhythms, supported by an extended concerted spiking activity and an abrupt change to this state. Furthermore, we built an adaptive mechanism that supports the generation of this kind of network, which rapidly creates the underlying structure based on the ongoing firing statistics.
Collapse
Affiliation(s)
- Eugenio Urdapilleta
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
5
|
Gao J, Efstathiou K. Reduction of oscillator dynamics on complex networks to dynamics on complete graphs through virtual frequencies. Phys Rev E 2020; 101:022302. [PMID: 32168684 DOI: 10.1103/physreve.101.022302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/22/2020] [Indexed: 11/06/2022]
Abstract
We consider the synchronization of oscillators in complex networks where there is an interplay between the oscillator dynamics and the network topology. Through a remarkable transformation in parameter space and the introduction of virtual frequencies we show that Kuramoto oscillators on annealed networks, with or without frequency-degree correlation, and Kuramoto oscillators on complete graphs with frequency-weighted coupling can be transformed to Kuramoto oscillators on complete graphs with a rearranged, virtual frequency distribution and uniform coupling. The virtual frequency distribution encodes both the natural frequency distribution (dynamics) and the degree distribution (topology). We apply this transformation to give direct explanations to a variety of phenomena that have been observed in complex networks, such as explosive synchronization and vanishing synchronization onset.
Collapse
Affiliation(s)
- Jian Gao
- Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands
| | - Konstantinos Efstathiou
- Division of Natural and Applied Sciences and Zu Chongzhi Center for Mathematics and Computational Science, Duke Kunshan University, No. 8 Duke Avenue, Kunshan 215316, China
| |
Collapse
|
6
|
Kundu P, Pal P. Synchronization transition in Sakaguchi-Kuramoto model on complex networks with partial degree-frequency correlation. CHAOS (WOODBURY, N.Y.) 2019; 29:013123. [PMID: 30709149 DOI: 10.1063/1.5045836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
We investigate transition to synchronization in the Sakaguchi-Kuramoto (SK) model on complex networks analytically as well as numerically. Natural frequencies of a percentage (f) of higher degree nodes of the network are assumed to be correlated with their degrees and that of the remaining nodes are drawn from some standard distribution, namely, Lorentz distribution. The effects of variation of f and phase frustration parameter α on transition to synchronization are investigated in detail. Self-consistent equations involving critical coupling strength (λc) and group angular velocity (Ωc) at the onset of synchronization have been derived analytically in the thermodynamic limit. For the detailed investigation, we considered the SK model on scale-free (SF) as well as Erdős-Rényi (ER) networks. Interestingly, explosive synchronization (ES) has been observed in both networks for different ranges of values of α and f. For SF networks, as the value of f is set within 10%≤f≤70%, the range of the values of α for existence of the ES is greatly enhanced compared to the fully degree-frequency correlated case when scaling exponent γ<3. ES is also observed in SF networks with γ>3, which is never observed in fully degree-frequency correlated environment. On the other hand, for random networks, ES observed is in a narrow window of α when the value of f is taken within 30%≤f≤50%. In all the cases, critical coupling strengths for transition to synchronization computed from the analytically derived self-consistent equations show a very good agreement with the numerical results. Finally, we observe ES in the metabolic network of the roundworm Caenorhabditis elegans in partially degree-frequency correlated environment.
Collapse
Affiliation(s)
- Prosenjit Kundu
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| | - Pinaki Pal
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
7
|
Saa A. Symmetries and synchronization in multilayer random networks. Phys Rev E 2018; 97:042304. [PMID: 29758722 DOI: 10.1103/physreve.97.042304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 06/08/2023]
Abstract
In the light of the recently proposed scenario of asymmetry-induced synchronization (AISync), in which dynamical uniformity and consensus in a distributed system would demand certain asymmetries in the underlying network, we investigate here the influence of some regularities in the interlayer connection patterns on the synchronization properties of multilayer random networks. More specifically, by considering a Stuart-Landau model of complex oscillators with random frequencies, we report for multilayer networks a dynamical behavior that could be also classified as a manifestation of AISync. We show, namely, that the presence of certain symmetries in the interlayer connection pattern tends to diminish the synchronization capability of the whole network or, in other words, asymmetries in the interlayer connections would enhance synchronization in such structured networks. Our results might help the understanding not only of the AISync mechanism itself but also its possible role in the determination of the interlayer connection pattern of multilayer and other structured networks with optimal synchronization properties.
Collapse
Affiliation(s)
- Alberto Saa
- Department of Applied Mathematics, University of Campinas, 13083-859 Campinas, SP, Brazil
| |
Collapse
|
8
|
Harunari PE, de Oliveira MM, Fiore CE. Partial inertia induces additional phase transition in the majority vote model. Phys Rev E 2018; 96:042305. [PMID: 29347484 DOI: 10.1103/physreve.96.042305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 11/07/2022]
Abstract
Explosive (i.e., discontinuous) transitions have aroused great interest by manifesting in distinct systems, such as synchronization in coupled oscillators, percolation regime, absorbing phase transitions, and more recently, the majority-vote model with inertia. In the latter, the model rules are slightly modified by the inclusion of a term depending on the local spin (an inertial term). In such a case, Chen et al. [Phys Rev. E 95, 042304 (2017)2470-004510.1103/PhysRevE.95.042304] have found that relevant inertia changes the nature of the phase transition in complex networks, from continuous to discontinuous. Here we give a further step by embedding inertia only in vertices with degree larger than a threshold value 〈k〉k^{*}, 〈k〉 being the mean system degree and k^{*} the fraction restriction. Our results, from mean-field analysis and extensive numerical simulations, reveal that an explosive transition is presented in both homogeneous and heterogeneous structures for small and intermediate k^{*}'s. Otherwise, a large restriction can sustain a discontinuous transition only in the heterogeneous case. This shares some similarities with recent results for the Kuramoto model [Phys. Rev. E 91, 022818 (2015)PLEEE81539-375510.1103/PhysRevE.91.022818]. Surprisingly, intermediate restriction and large inertia are responsible for the emergence of an extra phase, in which the system is partially synchronized and the classification of phase transition depends on the inertia and the lattice topology. In this case, the system exhibits two phase transitions.
Collapse
Affiliation(s)
- Pedro E Harunari
- Instituto de Física, Universidade de São Paulo, Caixa Postal 66318 05315-970 São Paulo, São Paulo, Brazil
| | - M M de Oliveira
- Departamento de Física e Matemática, CAP, Universidade Federal de São João del Rei, Ouro Branco-MG, 36420-000 Brazil
| | - C E Fiore
- Instituto de Física, Universidade de São Paulo, Caixa Postal 66318 05315-970 São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Kundu P, Khanra P, Hens C, Pal P. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model. Phys Rev E 2017; 96:052216. [PMID: 29347755 DOI: 10.1103/physreve.96.052216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 06/07/2023]
Abstract
We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.
Collapse
Affiliation(s)
- Prosenjit Kundu
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| | - Pitambar Khanra
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| | - Chittaranjan Hens
- Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Pinaki Pal
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
10
|
A Mathematical Model for Storage and Recall of Images using Targeted Synchronization of Coupled Maps. Sci Rep 2017; 7:8921. [PMID: 28827555 PMCID: PMC5566478 DOI: 10.1038/s41598-017-09440-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022] Open
Abstract
We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.
Collapse
|
11
|
Synchronization of phase oscillators with frequency-weighted coupling. Sci Rep 2016; 6:21926. [PMID: 26903110 PMCID: PMC4763290 DOI: 10.1038/srep21926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 11/08/2022] Open
Abstract
Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.
Collapse
|
12
|
Pinto RS, Saa A. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062801. [PMID: 26764738 DOI: 10.1103/physreve.92.062801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 05/16/2023]
Abstract
A recently proposed dimensional reduction approach for studying synchronization in the Kuramoto model is employed to build optimal network topologies to favor or to suppress synchronization. The approach is based in the introduction of a collective coordinate for the time evolution of the phase locked oscillators, in the spirit of the Ott-Antonsen ansatz. We show that the optimal synchronization of a Kuramoto network demands the maximization of the quadratic function ω(T)Lω, where ω stands for the vector of the natural frequencies of the oscillators and L for the network Laplacian matrix. Many recently obtained numerical results can be reobtained analytically and in a simpler way from our maximization condition. A computationally efficient hill climb rewiring algorithm is proposed to generate networks with optimal synchronization properties. Our approach can be easily adapted to the case of the Kuramoto models with both attractive and repulsive interactions, and again many recent numerical results can be rederived in a simpler and clearer analytical manner.
Collapse
Affiliation(s)
- Rafael S Pinto
- Instituto de Física "Gleb Wataghin," UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Alberto Saa
- Departamento de Matemática Aplicada, UNICAMP, 13083-859 Campinas, SP, Brazil
| |
Collapse
|