1
|
Bendahmane M, Karami F, Zagour M. Multiscale derivation of deterministic and stochastic cross-diffusion models in a fluid: A review. CHAOS (WOODBURY, N.Y.) 2024; 34:122101. [PMID: 39661971 DOI: 10.1063/5.0238999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
This paper presents a survey and critical analysis of the mathematical literature on modeling of dynamic populations living in a fluid medium. The present review paper is divided into two main parts: The first part deals with the multiscale derivation of deterministic and stochastic cross-diffusion systems governed by the incompressible Navier-Stokes equations. The derivation is obtained from the underlying description at the microscopic scale in kinetic theory models according to the micro-macro decomposition method. In the second part of this review, we are delighted to present a new variety of mathematical models describing different applications, namely, the pursuit-evasion dynamics, cancer invasion, and virus dynamics. Finally, critical analysis and future research perspectives are discussed.
Collapse
Affiliation(s)
- M Bendahmane
- Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33076 Bordeaux Cedex, France
| | - F Karami
- École Supérieure de Technologie d'Essaouira, Université Cadi Ayyad, Km 9, Route d'Agadir, Essaouira Aljadida BP. 383, Ghazoua 44000, Morocco
| | - M Zagour
- Euromed University of Fés (UEMF Fés), BiomedTech Engineering School, 30000 Fés, Morocco
| |
Collapse
|
2
|
Turbulent coherent structures and early life below the Kolmogorov scale. Nat Commun 2020; 11:2192. [PMID: 32366844 PMCID: PMC7198613 DOI: 10.1038/s41467-020-15780-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/27/2020] [Indexed: 01/28/2023] Open
Abstract
Major evolutionary transitions, including the emergence of life, likely occurred in aqueous environments. While the role of water’s chemistry in early life is well studied, the effects of water’s ability to manipulate population structure are less clear. Population structure is known to be critical, as effective replicators must be insulated from parasites. Here, we propose that turbulent coherent structures, long-lasting flow patterns which trap particles, may serve many of the properties associated with compartments — collocalization, division, and merging — which are commonly thought to play a key role in the origins of life and other evolutionary transitions. We substantiate this idea by simulating multiple proposed metabolisms for early life in a simple model of a turbulent flow, and find that balancing the turnover times of biological particles and coherent structures can indeed enhance the likelihood of these metabolisms overcoming extinction either via parasitism or via a lack of metabolic support. Our results suggest that group selection models may be applicable with fewer physical and chemical constraints than previously thought, and apply much more widely in aqueous environments. Models of the origin of life generally require a mechanism to structure emerging populations. Here, Krieger et al. develop spatial models showing that coherent structures arising in turbulent flows in aquatic environments could have provided compartments that facilitated the origin of life.
Collapse
|
3
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|
4
|
Structured environments fundamentally alter dynamics and stability of ecological communities. Proc Natl Acad Sci U S A 2018; 116:379-388. [PMID: 30593565 DOI: 10.1073/pnas.1811887116] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics and stability of ecological communities are intimately linked with the specific interactions-like cooperation or predation-between constituent species. In microbial communities, like those found in soils or the mammalian gut, physical anisotropies produced by fluid flow and chemical gradients impact community structure and ecological dynamics, even in structurally isotropic environments. Although natural communities existing in physically unstructured environments are rare, the role of environmental structure in determining community dynamics and stability remains poorly studied. To address this gap, we used modified Lotka-Volterra simulations of competitive microbial communities to characterize the effects of surface structure on community dynamics. We find that environmental structure has profound effects on communities, in a manner dependent on the specific pattern of interactions between community members. For two mutually competing species, eventual extinction of one competitor is effectively guaranteed in isotropic environments. However, addition of environmental structure enables long-term coexistence of both species via local "pinning" of competition interfaces, even when one species has a significant competitive advantage. In contrast, while three species competing in an intransitive loop (as in a game of rock-paper-scissors) coexist stably in isotropic environments, structural anisotropy disrupts the spatial patterns on which coexistence depends, causing chaotic population fluctuations and subsequent extinction cascades. These results indicate that the stability of microbial communities strongly depends on the structural environment in which they reside. Therefore, a more complete ecological understanding, including effective manipulation and interventions in natural communities of interest, must account for the physical structure of the environment.
Collapse
|
5
|
Park J, Do Y, Jang B. Multistability in the cyclic competition system. CHAOS (WOODBURY, N.Y.) 2018; 28:113110. [PMID: 30501221 DOI: 10.1063/1.5045366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Cyclically competition models have been successful to gain an insight of biodiversity mechanism in ecosystems. There are, however, still limitations to elucidate complex phenomena arising in real competition. In this paper, we report that a multistability occurs in a simple rock-paper-scissor cyclically competition model by assuming that intraspecific competition depends on the logistic growth of each species density. This complex stability is absent in any cyclically competition model, and we investigate how the proposed intraspecific competition affects biodiversity in the existing society of three species through macroscopic and microscopic approaches. When the system is multistable, we show basins of the asymptotically stable heteroclinic cycle and stable attractors to demonstrate how the survival state is determined by initial densities of three species. Also, we find that the multistability is associated with a subcritical Hopf bifurcation. This surprising finding will give an opportunity to interpret rich dynamical phenomena in ecosystems which may occur in cyclic competition systems with different types of interactions.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Younghae Do
- Department of Mathematics, KNU-Center for Nonlinear Dynamics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bongsoo Jang
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Avelino PP, Bazeia D, Losano L, Menezes J, de Oliveira BF, Santos MA. How directional mobility affects coexistence in rock-paper-scissors models. Phys Rev E 2018; 97:032415. [PMID: 29776155 DOI: 10.1103/physreve.97.032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Indexed: 11/07/2022]
Abstract
This work deals with a system of three distinct species that changes in time under the presence of mobility, selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the modification of the mobility rule to the case of directional mobility, in which the species move following the direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood. Directional mobility can be used to simulate eyes that see or a nose that smells, and we show how it may contribute to reduce the probability of coexistence.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal
| | - D Bazeia
- Departamento de Física, Universidade Federal da Paraíba 58051-900 João Pessoa, PB, Brazil
| | - L Losano
- Departamento de Física, Universidade Federal da Paraíba 58051-900 João Pessoa, PB, Brazil
| | - J Menezes
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970, Natal, RN, Brazil.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - M A Santos
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
7
|
Herrerías-Azcué F, Pérez-Muñuzuri V, Galla T. Stirring does not make populations well mixed. Sci Rep 2018; 8:4068. [PMID: 29511246 PMCID: PMC5840425 DOI: 10.1038/s41598-018-22062-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/09/2018] [Indexed: 12/02/2022] Open
Abstract
In evolutionary dynamics, the notion of a ‘well-mixed’ population is usually associated with all-to-all interactions at all times. This assumption simplifies the mathematics of evolutionary processes, and makes analytical solutions possible. At the same time the term ‘well-mixed’ suggests that this situation can be achieved by physically stirring the population. Using simulations of populations in chaotic flows, we show that in most cases this is not true: conventional well-mixed theories do not predict fixation probabilities correctly, regardless of how fast or thorough the stirring is. We propose a new analytical description in the fast-flow limit. This approach is valid for processes with global and local selection, and accurately predicts the suppression of selection as competition becomes more local. It provides a modelling tool for biological or social systems with individuals in motion.
Collapse
Affiliation(s)
- Francisco Herrerías-Azcué
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, M13 9PL, Manchester, United Kingdom.
| | - Vicente Pérez-Muñuzuri
- Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Tobias Galla
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, M13 9PL, Manchester, United Kingdom.
| |
Collapse
|
8
|
Souza-Filho CA, Bazeia D, Ramos JGGS. Apex predator and the cyclic competition in a rock-paper-scissors game of three species. Phys Rev E 2017; 95:062411. [PMID: 28709300 DOI: 10.1103/physreve.95.062411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 06/07/2023]
Abstract
This work deals with the effects of an apex predator on the cyclic competition among three distinct species that follow the rules of the rock-paper-scissors game. The investigation develops standard stochastic simulations but is motivated by a procedure which is explained in the work. We add the apex predator as the fourth species in a system that contains three species that evolve following the standard rules of migration, reproduction, and predation, and study how the system evolves in this new environment, in comparison with the case in the absence of the apex predator. The results show that the apex predator engenders the tendency to spread uniformly in the lattice, contributing to destroy the spiral patterns, keeping biodiversity but diminishing the average size of the clusters of the species that compete cyclically.
Collapse
Affiliation(s)
- C A Souza-Filho
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, Campus Princesa Isabel, 58755-000, Princesa Isabel, Paraíba, Brazil
| | - D Bazeia
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| | - J G G S Ramos
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| |
Collapse
|
9
|
Abstract
Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov’s theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform. Random fibre lasers constitute a class of lasers where the optical feedback is provided by multiple scattering in a disordered system. Here, González et al. theoretically and experimentally study the statistical turbulence behaviour in relation to the lasing transition in such lasers.
Collapse
|
10
|
Feldager CW, Mitarai N, Ohta H. Deterministic extinction by mixing in cyclically competing species. Phys Rev E 2017; 95:032318. [PMID: 28415345 DOI: 10.1103/physreve.95.032318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 11/07/2022]
Abstract
We consider a cyclically competing species model on a ring with global mixing at finite rate, which corresponds to the well-known Lotka-Volterra equation in the limit of infinite mixing rate. Within a perturbation analysis of the model from the infinite mixing rate, we provide analytical evidence that extinction occurs deterministically at sufficiently large but finite values of the mixing rate for any species number N≥3. Further, by focusing on the cases of rather small species numbers, we discuss numerical results concerning the trajectories toward such deterministic extinction, including global bifurcations caused by changing the mixing rate.
Collapse
Affiliation(s)
- Cilie W Feldager
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Namiko Mitarai
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Hiroki Ohta
- Niels Bohr International Academy/Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Szolnoki A, Perc M. Biodiversity in models of cyclic dominance is preserved by heterogeneity in site-specific invasion rates. Sci Rep 2016; 6:38608. [PMID: 27917952 PMCID: PMC5137108 DOI: 10.1038/srep38608] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Global, population-wide oscillations in models of cyclic dominance may result in the collapse of biodiversity due to the accidental extinction of one species in the loop. Previous research has shown that such oscillations can emerge if the interaction network has small-world properties, and more generally, because of long-range interactions among individuals or because of mobility. But although these features are all common in nature, global oscillations are rarely observed in actual biological systems. This begets the question what is the missing ingredient that would prevent local oscillations to synchronize across the population to form global oscillations. Here we show that, although heterogeneous species-specific invasion rates fail to have a noticeable impact on species coexistence, randomness in site-specific invasion rates successfully hinders the emergence of global oscillations and thus preserves biodiversity. Our model takes into account that the environment is often not uniform but rather spatially heterogeneous, which may influence the success of microscopic dynamics locally. This prevents the synchronization of locally emerging oscillations, and ultimately results in a phenomenon where one type of randomness is used to mitigate the adverse effects of other types of randomness in the system.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia.,CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| |
Collapse
|
12
|
Roman A, Dasgupta D, Pleimling M. A theoretical approach to understand spatial organization in complex ecologies. J Theor Biol 2016; 403:10-16. [DOI: 10.1016/j.jtbi.2016.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
13
|
Szolnoki A, Chen X. Benefits of tolerance in public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042813. [PMID: 26565295 DOI: 10.1103/physreve.92.042813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 05/27/2023]
Abstract
Leaving the joint enterprise when defection is unveiled is always a viable option to avoid being exploited. Although loner strategy helps the population not to be trapped into the tragedy of the commons state, it could offer only a modest income for nonparticipants. In this paper we demonstrate that showing some tolerance toward defectors could not only save cooperation in harsh environments but in fact results in a surprisingly high average payoff for group members in public goods games. Phase diagrams and the underlying spatial patterns reveal the high complexity of evolving states where cyclic dominant strategies or two-strategy alliances can characterize the final state of evolution. We identify microscopic mechanisms which are responsible for the superiority of global solutions containing tolerant players. This phenomenon is robust and can be observed both in well-mixed and in structured populations highlighting the importance of tolerance in our everyday life.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|