1
|
Eliazar I. Power Levy motion. I. Diffusion. CHAOS (WOODBURY, N.Y.) 2025; 35:033157. [PMID: 40131285 DOI: 10.1063/5.0251337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Recently introduced and explored, power Brownian motion (PBM) is a versatile generalization of Brownian motion: it is Markovian on the one hand and it displays a variety of anomalous-diffusion behaviors on the other hand. Brownian motion is the universal scaling-limit of finite-variance random walks. Shifting from the finite-variance realm to the infinite-variance realm, the counterpart of Brownian motion is Levy motion: the stable and symmetric Levy process. This pair of papers introduces and explores power Levy motion (PLM), which is to Levy motion what PBM is to Brownian motion. This first part of the pair constructs PLM and explains its emergence and rationale. Taking on a "diffusion perspective," this part addresses the following facets and features of PLM: increments and their Fourier structure, selfsimilarity and Hurst exponent, sub-diffusion and super-diffusion, aging and anti-aging, and Holder exponent. Taking on an "evolution perspective," the second part will continue the investigation of PLM.
Collapse
Affiliation(s)
- Iddo Eliazar
- School of Chemistry, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
2
|
Eliazar I. Power Levy motion. II. Evolution. CHAOS (WOODBURY, N.Y.) 2025; 35:033158. [PMID: 40131286 DOI: 10.1063/5.0251341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
This is the second part of a pair of papers that introduce and explore power Levy motion (PLM). The first part constructed PLM and explained its emergence and rationale. Taking on a "diffusion perspective," the first part addressed key facets and features of PLM. Taking on an "evolution perspective," this part continues the investigation of PLM and addresses its following facets and features: Markov dynamics and propagator; simulation; increments' conditional distributions; persistence and anti-persistence; power-law asymptotics and Taylor's law; integral representation; Langevin dynamics and stochastic differential equation; center-reversion and center-repulsion; decreasing and increasing volatility; Lamperti transformation and Ornstein-Uhlenbeck representation. This pair of papers establishes PLM as a potent and compelling anomalous-diffusion model and presents a comprehensive exposition of PLM.
Collapse
Affiliation(s)
- Iddo Eliazar
- School of Chemistry, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
3
|
Liang Y, Wang W, Metzler R. Aging and confinement in subordinated fractional Brownian motion. Phys Rev E 2024; 109:064144. [PMID: 39020934 DOI: 10.1103/physreve.109.064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
We study the effects of aging properties of subordinated fractional Brownian motion (FBM) with drift and in harmonic confinement, when the measurement of the stochastic process starts a time t_{a}>0 after its original initiation at t=0. Specifically, we consider the aged versions of the ensemble mean-squared displacement (MSD) and the time-averaged MSD (TAMSD), along with the aging factor. Our results are favorably compared with simulations results. The aging subordinated FBM exhibits a disparity between MSD and TAMSD and is thus weakly nonergodic, while strong aging is shown to effect a convergence of the MSD and TAMSD. The information on the aging factor with respect to the lag time exhibits an identical form to the aging behavior of subdiffusive continuous-time random walks (CTRW). The statistical properties of the MSD and TAMSD for the confined subordinated FBM are also derived. At long times, the MSD in the harmonic potential has a stationary value, that depends on the Hurst index of the parental (nonequilibrium) FBM. The TAMSD of confined subordinated FBM does not relax to a stationary value but increases sublinearly with lag time, analogously to confined CTRW. Specifically, short aging times t_{a} in confined subordinated FBM do not affect the aged MSD, while for long aging times the aged MSD has a power-law increase and is identical to the aged TAMSD.
Collapse
|
4
|
Li Y, Suleiman K, Xu Y. Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics. Phys Rev E 2024; 109:014139. [PMID: 38366530 DOI: 10.1103/physreve.109.014139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/07/2023] [Indexed: 02/18/2024]
Abstract
Scaled Brownian motions (SBMs) with power-law time-dependent diffusivity have been used to describe various types of anomalous diffusion yet Gaussian observed in granular gases kinetics, turbulent diffusion, and molecules mobility in cells, to name a few. However, some of these systems may exhibit non-Gaussian behavior which can be described by SBM with diffusing diffusivity (DD-SBM). Here, we numerically investigate both free and confined DD-SBM models characterized by fixed or stochastic scaling exponent of time-dependent diffusivity. The effects of distributed scaling exponent, random diffusivity, and confinement are considered. Different regimes of ultraslow diffusion, subdiffusion, normal diffusion, and superdiffusion are observed. In addition, weak ergodic and non-Gaussian behaviors are also detected. These results provide insights into diffusion in time-fluctuating diffusivity landscapes with potential applications to time-dependent temperature systems spreading in heterogeneous environments.
Collapse
Affiliation(s)
- Yongge Li
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kheder Suleiman
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yong Xu
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- MOE Key Laboratory for Complexity Science in Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Wawrzkiewicz-Jałowiecka A, Fuliński A. Brownian Aging as One of the Mechanistic Components That Shape the Single-Channel Ionic Currents through Biological and Synthetic Membranes. MEMBRANES 2023; 13:879. [PMID: 37999365 PMCID: PMC10673163 DOI: 10.3390/membranes13110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Semipermeable membranes enable the separation of a given system from its environment. In biological terms, they are responsible for cells' identity. In turn, the functioning of ion channels is crucial for the control of ionic fluxes across the membranes and, consequently, for the exchange of chemical and electrical signals. This paper presents a model and simulations of currents through ionic nanochannels in an attempt to better understand the physical mechanism(s) of open/closed (O/C) sequences, i.e., random interruptions of ionic flows through channels observed in all known biochannels and in some synthetic nanopores. We investigate whether aging, i.e., the changes in Brownian motion characteristics with the lapse of time, may be at least one of the sources of the O/C sequences (in addition to the gating machinery in biochannels). The simulations based on the approximated nanostructure of ion channels confirm this postulation. The results also show the possibility of changing the O/C characteristics through an appropriate alteration of the channel surroundings. This observation may be valuable in technical uses of nanochannels in synthetic membranes and allow for a better understanding of the reason for the differences between the biochannels' activity in diverse biological membranes. Proposals of experimental verification of this aging O/C hypothesis are also presented.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Andrzej Fuliński
- Institute of Theoretical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
6
|
Weak Point of SARS-CoV-2: Human and Viral Ion Channels under External Physical Fields. Int J Mol Sci 2022; 23:ijms232315185. [PMID: 36499511 PMCID: PMC9737394 DOI: 10.3390/ijms232315185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The ionic E-nanochannel (viroporin) is the weak point of SARS-CoV-2, the virus responsible for the (still threatening) COVID-19 since it is vital to the virus's budding and propagation. Therefore, targeting it to disable its functions ought to incapacitate, or at least weaken, the virus. The ionic currents inside this channel could be affected and disturbed by direct physical attack via the actions of external fields. The paper presents the first step towards the application of such methods in the fight against the current pandemic, numerical simulations of external fields' impact on ionic currents through viral channels. These simulations-based on the actual, detailed physical nanostructure of ionic channels, measured experimentally and reported in the literature-show that external physical fields can diminish the channel's currents and that the lower the channel's selectivity, the stronger the effect. Simulations suggest that SARS-CoV-2 E-viroporin is almost non-selective, which means that the whole virus ought to be highly vulnerable to the actions of external physical fields, much more vulnerable than the much more selective human cell ionic channels. If corroborated by experiment, this observation may result in an innovative method of dealing with the recent pandemic caused by SARS-CoV-2 and other similar viruses.
Collapse
|
7
|
Wang W, Cherstvy AG, Liu X, Metzler R. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise. Phys Rev E 2020; 102:012146. [PMID: 32794926 DOI: 10.1103/physreve.102.012146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
Heterogeneous diffusion processes (HDPs) feature a space-dependent diffusivity of the form D(x)=D_{0}|x|^{α}. Such processes yield anomalous diffusion and weak ergodicity breaking, the asymptotic disparity between ensemble and time averaged observables, such as the mean-squared displacement. Fractional Brownian motion (FBM) with its long-range correlated yet Gaussian increments gives rise to anomalous and ergodic diffusion. Here, we study a combined model of HDPs and FBM to describe the particle dynamics in complex systems with position-dependent diffusivity driven by fractional Gaussian noise. This type of motion is, inter alia, relevant for tracer-particle diffusion in biological cells or heterogeneous complex fluids. We show that the long-time scaling behavior predicted theoretically and by simulations for the ensemble- and time-averaged mean-squared displacements couple the scaling exponents α of HDPs and the Hurst exponent H of FBM in a characteristic way. Our analysis of the simulated data in terms of the rescaled variable y∼|x|^{1/(2/(2-α))}/t^{H} coupling particle position x and time t yields a simple, Gaussian probability density function (PDF), P_{HDP-FBM}(y)=e^{-y^{2}}/sqrt[π]. Its universal shape agrees well with theoretical predictions for both uni- and bimodal PDF distributions.
Collapse
Affiliation(s)
- Wei Wang
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China.,Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Xianbin Liu
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Guerrero BV, Chakraborty B, Zuriguel I, Garcimartín A. Nonergodicity in silo unclogging: Broken and unbroken arches. Phys Rev E 2019; 100:032901. [PMID: 31639941 DOI: 10.1103/physreve.100.032901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 11/07/2022]
Abstract
We report an experiment on the unclogging dynamics in a two-dimensional silo submitted to a sustained gentle vibration. We find that arches present a jerking motion where rearrangements in the positions of their beads are interspersed with quiescent periods. This behavior occurs for both arches that break down and those that withstand the external perturbation: Arches evolve until they either collapse or get trapped in a stable configuration. This evolution is described in terms of a scalar variable characterizing the arch shape that can be modeled as a continuous-time random walk. By studying the diffusivity of this variable, we show that the unclogging is a weakly nonergodic process. Remarkably, arches that do not collapse explore different configurations before settling in one of them and break ergodicity much in the same way than arches that break down.
Collapse
Affiliation(s)
- B V Guerrero
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - B Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - I Zuriguel
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - A Garcimartín
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| |
Collapse
|
9
|
Lee H, Song S, Kim J, Sung J. Survival Probability Dynamics of Scaled Brownian Motion: Effect of Nonstationary Property. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hunki Lee
- Creative Research Initiative Center for Chemical Dynamics in Living CellsChung‐Ang University Seoul 06974 Republic of Korea
- Department of ChemistryChung‐Ang University Seoul 06974 Republic of Korea
| | - Sanggeun Song
- Creative Research Initiative Center for Chemical Dynamics in Living CellsChung‐Ang University Seoul 06974 Republic of Korea
- Department of ChemistryChung‐Ang University Seoul 06974 Republic of Korea
| | - Ji‐Hyun Kim
- Creative Research Initiative Center for Chemical Dynamics in Living CellsChung‐Ang University Seoul 06974 Republic of Korea
| | - Jaeyoung Sung
- Creative Research Initiative Center for Chemical Dynamics in Living CellsChung‐Ang University Seoul 06974 Republic of Korea
- Department of ChemistryChung‐Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
10
|
Levernier N, Bénichou O, Guérin T, Voituriez R. Universal first-passage statistics in aging media. Phys Rev E 2018; 98:022125. [PMID: 30253583 DOI: 10.1103/physreve.98.022125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/07/2022]
Abstract
It has been known for a long time that the kinetics of diffusion-limited reactions can be quantified by the time needed for a diffusing molecule to reach a target: the first-passage time (FPT). So far the general determination of the mean first-passage time to a target in confinement has left aside aging media, such as glassy materials, cellular media, or cold atoms in optical lattices. Here we consider general non-Markovian scale-invariant diffusion processes, which model a broad class of transport processes of molecules in aging media, and demonstrate that all the moments of the FPT obey universal scalings with the confining volume with nontrivial exponents. Our analysis shows that a nonlinear scaling with the volume of the mean FPT, which quantities the mean reaction time, is the hallmark of aging and provides a general tool to quantify its impact on reaction kinetics in confinement.
Collapse
Affiliation(s)
- N Levernier
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS, UPMC, 4 Place Jussieu, 75005 Paris, France
| | - O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS, UPMC, 4 Place Jussieu, 75005 Paris, France
| | - T Guérin
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux, Unité Mixte de Recherche No. 5798, CNRS, 33400 Talence, France
| | - R Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS, UPMC, 4 Place Jussieu, 75005 Paris, France.,Laboratoire Jean Perrin, CNRS, UPMC, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
11
|
Cherstvy AG, Thapa S, Mardoukhi Y, Chechkin AV, Metzler R. Time averages and their statistical variation for the Ornstein-Uhlenbeck process: Role of initial particle distributions and relaxation to stationarity. Phys Rev E 2018; 98:022134. [PMID: 30253569 DOI: 10.1103/physreve.98.022134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 06/08/2023]
Abstract
How ergodic is diffusion under harmonic confinements? How strongly do ensemble- and time-averaged displacements differ for a thermally-agitated particle performing confined motion for different initial conditions? We here study these questions for the generic Ornstein-Uhlenbeck (OU) process and derive the analytical expressions for the second and fourth moment. These quantifiers are particularly relevant for the increasing number of single-particle tracking experiments using optical traps. For a fixed starting position, we discuss the definitions underlying the ensemble averages. We also quantify effects of equilibrium and nonequilibrium initial particle distributions onto the relaxation properties and emerging nonequivalence of the ensemble- and time-averaged displacements (even in the limit of long trajectories). We derive analytical expressions for the ergodicity breaking parameter quantifying the amplitude scatter of individual time-averaged trajectories, both for equilibrium and out-of-equilibrium initial particle positions, in the entire range of lag times. Our analytical predictions are in excellent agreement with results of computer simulations of the Langevin equation in a parabolic potential. We also examine the validity of the Einstein relation for the ensemble- and time-averaged moments of the OU-particle. Some physical systems, in which the relaxation and nonergodic features we unveiled may be observable, are discussed.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Samudrajit Thapa
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Yousof Mardoukhi
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Choi Y, Kim HJ. Nonstationary Markovian replication process causing diverse diffusions. Phys Rev E 2017; 96:042144. [PMID: 29347487 DOI: 10.1103/physreve.96.042144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 06/07/2023]
Abstract
We introduce a single generative mechanism that can be used to describe diverse nonstationary diffusions. A nonstationary Markovian replication process for steps is considered for which we derive analytically the time evolution of the probability distribution of the walker's displacement and the generalized telegrapher equation with time-varying coefficients, and we find that diffusivity can be determined by temporal changes of replication of an immediate step. By controlling the replications, we realize diverse diffusions such as alternating diffusion, superdiffusion, subdiffusion, and marginal diffusion, which originate from oscillating, increasing, decreasing, and slowly increasing or decreasing replications with time, respectively.
Collapse
Affiliation(s)
- Yichul Choi
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435, USA
| | - Hyun-Joo Kim
- Department of Physics Education, Korea National University of Education, Chungbuk 363-791, Korea
| |
Collapse
|
13
|
|
14
|
Budini AA. Memory-induced diffusive-superdiffusive transition: Ensemble and time-averaged observables. Phys Rev E 2017; 95:052110. [PMID: 28618554 DOI: 10.1103/physreve.95.052110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 06/07/2023]
Abstract
The ensemble properties and time-averaged observables of a memory-induced diffusive-superdiffusive transition are studied. The model consists in a random walker whose transitions in a given direction depend on a weighted linear combination of the number of both right and left previous transitions. The diffusion process is nonstationary, and its probability develops the phenomenon of aging. Depending on the characteristic memory parameters, the ensemble behavior may be normal, superdiffusive, or ballistic. In contrast, the time-averaged mean squared displacement is equal to that of a normal undriven random walk, which renders the process nonergodic. In addition, and similarly to Lévy walks [Godec and Metzler, Phys. Rev. Lett. 110, 020603 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.020603], for trajectories of finite duration the time-averaged displacement apparently become random with properties that depend on the measurement time and also on the memory properties. These features are related to the nonstationary power-law decay of the transition probabilities to their stationary values. Time-averaged response to a bias is also calculated. In contrast with Lévy walks [Froemberg and Barkai, Phys. Rev. E 87, 030104(R) (2013)PLEEE81539-375510.1103/PhysRevE.87.030104], the response always vanishes asymptotically.
Collapse
Affiliation(s)
- Adrián A Budini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche, Avenida E. Bustillo Km 9.5, (8400) Bariloche, Argentina and Universidad Tecnológica Nacional (UTN-FRBA), Fanny Newbery 111, (8400) Bariloche, Argentina
| |
Collapse
|
15
|
Saeedian M, Khalighi M, Azimi-Tafreshi N, Jafari GR, Ausloos M. Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model. Phys Rev E 2017; 95:022409. [PMID: 28297983 PMCID: PMC7217510 DOI: 10.1103/physreve.95.022409] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 12/20/2016] [Indexed: 12/02/2022]
Abstract
Memory has a great impact on the evolution of every process related to human societies. Among them, the evolution of an epidemic is directly related to the individuals' experiences. Indeed, any real epidemic process is clearly sustained by a non-Markovian dynamics: memory effects play an essential role in the spreading of diseases. Including memory effects in the susceptible-infected-recovered (SIR) epidemic model seems very appropriate for such an investigation. Thus, the memory prone SIR model dynamics is investigated using fractional derivatives. The decay of long-range memory, taken as a power-law function, is directly controlled by the order of the fractional derivatives in the corresponding nonlinear fractional differential evolution equations. Here we assume "fully mixed" approximation and show that the epidemic threshold is shifted to higher values than those for the memoryless system, depending on this memory "length" decay exponent. We also consider the SIR model on structured networks and study the effect of topology on threshold points in a non-Markovian dynamics. Furthermore, the lack of access to the precise information about the initial conditions or the past events plays a very relevant role in the correct estimation or prediction of the epidemic evolution. Such a "constraint" is analyzed and discussed.
Collapse
Affiliation(s)
- M Saeedian
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
| | - M Khalighi
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
| | - N Azimi-Tafreshi
- Physics Department, Institute for Advanced Studies in Basic Sciences, 45195-1159 Zanjan, Iran
| | - G R Jafari
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Center for Network Science, Central European University, H-1051 Budapest, Hungary
| | - M Ausloos
- GRAPES, rue de la Belle Jardinière 483, B-4031 Angleur, Belgium
- School of Management, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- eHumanities group, Royal Netherlands Academy of Arts and Sciences, Joan Muyskenweg 25, 1096 CJ, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Safdari H, Cherstvy AG, Chechkin AV, Bodrova A, Metzler R. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Phys Rev E 2017; 95:012120. [PMID: 28208482 DOI: 10.1103/physreve.95.012120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 06/06/2023]
Abstract
We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble- and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.
Collapse
Affiliation(s)
- Hadiseh Safdari
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Department of Physics, Shahid Beheshti University, 19839 Tehran, Iran
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
- Department of Physics & Astronomy, University of Padova, "Galileo Galilei" - DFA, 35131 Padova, Italy
| | - Anna Bodrova
- Institute of Physics, Humboldt University Berlin, 12489 Berlin, Germany
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
17
|
Budini AA. Inhomogeneous diffusion and ergodicity breaking induced by global memory effects. Phys Rev E 2016; 94:052142. [PMID: 27967169 DOI: 10.1103/physreve.94.052142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 06/06/2023]
Abstract
We introduce a class of discrete random-walk model driven by global memory effects. At any time, the right-left transitions depend on the whole previous history of the walker, being defined by an urnlike memory mechanism. The characteristic function is calculated in an exact way, which allows us to demonstrate that the ensemble of realizations is ballistic. Asymptotically, each realization is equivalent to that of a biased Markovian diffusion process with transition rates that strongly differs from one trajectory to another. Using this "inhomogeneous diffusion" feature, the ergodic properties of the dynamics are analytically studied through the time-averaged moments. Even in the long-time regime, they remain random objects. While their average over realizations recovers the corresponding ensemble averages, departure between time and ensemble averages is explicitly shown through their probability densities. For the density of the second time-averaged moment, an ergodic limit and the limit of infinite lag times do not commutate. All these effects are induced by the memory effects. A generalized Einstein fluctuation-dissipation relation is also obtained for the time-averaged moments.
Collapse
Affiliation(s)
- Adrián A Budini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche, Avenida E. Bustillo Km 9.5, (8400) Bariloche, Argentina and Universidad Tecnológica Nacional (UTN-FRBA), Fanny Newbery 111, (8400) Bariloche, Argentina
| |
Collapse
|
18
|
Budini AA. Weak ergodicity breaking induced by global memory effects. Phys Rev E 2016; 94:022108. [PMID: 27627247 DOI: 10.1103/physreve.94.022108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 06/06/2023]
Abstract
We study the phenomenon of weak ergodicity breaking for a class of globally correlated random walk dynamics defined over a finite set of states. The persistence in a given state or the transition to another one depends on the whole previous temporal history of the system. A set of waiting time distributions, associated to each state, sets the random times between consecutive steps. Their mean value is finite for all states. The probability density of time-averaged observables is obtained for different memory mechanisms. This statistical object explicitly shows departures between time and ensemble averages. While the residence time in each state may have a divergent mean value, we demonstrate that this condition is in general not necessary for breaking ergodicity. Hence, we conclude that global memory effects are an alternative mechanism able to induce ergodicity breaking without involving power-law statistics. Analytical and numerical calculations support these results.
Collapse
Affiliation(s)
- Adrián A Budini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche, Avenida E. Bustillo Km 9.5, (8400) Bariloche, Argentina and Universidad Tecnológica Nacional (UTN-FRBA), Fanny Newbery 111, (8400) Bariloche, Argentina
| |
Collapse
|
19
|
Bodrova AS, Chechkin AV, Cherstvy AG, Safdari H, Sokolov IM, Metzler R. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion. Sci Rep 2016; 6:30520. [PMID: 27462008 PMCID: PMC4962320 DOI: 10.1038/srep30520] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/04/2016] [Indexed: 01/23/2023] Open
Abstract
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
Collapse
Affiliation(s)
- Anna S Bodrova
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany.,Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksei V Chechkin
- Akhiezer Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine.,Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany.,Department of Physics &Astronomy, University of Padova, 35122 Padova, Italy
| | - Andrey G Cherstvy
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Hadiseh Safdari
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany.,Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
20
|
Safdari H, Zare Kamali M, Shirazi A, Khalighi M, Jafari G, Ausloos M. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions. PLoS One 2016; 11:e0154983. [PMID: 27171424 PMCID: PMC4865103 DOI: 10.1371/journal.pone.0154983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/23/2016] [Indexed: 11/19/2022] Open
Abstract
In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of "commonly accepted beliefs" seems rarely studied. In this paper, we examine how the growth process of a (social) network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA) differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node's age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model.
Collapse
Affiliation(s)
- Hadiseh Safdari
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
| | - Milad Zare Kamali
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
| | - Amirhossein Shirazi
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
| | - Moein Khalighi
- Department of Mathematics, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Jafari
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
- The Institute for Brain and Cognitive Science (IBCS), Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
- Center for Network Science, Central European University, Nador 9, 1051 Budapest, Hungary
| | - Marcel Ausloos
- GRAPES, rue de la Belle Jardiniere 483, B-4031, Angleur, Belgium
- School of Management, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
- eHumanities group, Royal Netherlands Academy of Arts and Sciences, Joan Muyskenweg 25, 1096 CJ, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Cherstvy AG, Metzler R. Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes. J Chem Phys 2016; 142:144105. [PMID: 25877560 DOI: 10.1063/1.4917077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We study noisy heterogeneous diffusion processes with a position dependent diffusivity of the form D(x) ∼ D0|x|(α0) in the presence of annealed and quenched disorder of the environment, corresponding to an effective variation of the exponent α in time and space. In the case of annealed disorder, for which effectively α0 = α0(t), we show how the long time scaling of the ensemble mean squared displacement (MSD) and the amplitude variation of individual realizations of the time averaged MSD are affected by the disorder strength. For the case of quenched disorder, the long time behavior becomes effectively Brownian after a number of jumps between the domains of a stratified medium. In the latter situation, the averages are taken over both an ensemble of particles and different realizations of the disorder. As physical observables, we analyze in detail the ensemble and time averaged MSDs, the ergodicity breaking parameter, and higher order moments of the time averages.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
22
|
Cherstvy AG, Metzler R. Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes. Phys Chem Chem Phys 2016; 18:23840-52. [DOI: 10.1039/c6cp03101c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigate the diffusive and ergodic properties of massive and confined particles in a model disordered medium, in which the local diffusivity fluctuates in time while its mean has a power law dependence on the diffusion time.
Collapse
Affiliation(s)
- Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
23
|
Mardoukhi Y, Jeon JH, Metzler R. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster. Phys Chem Chem Phys 2015; 17:30134-47. [PMID: 26503611 DOI: 10.1039/c5cp03548a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law ∼T(-h) with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.
Collapse
Affiliation(s)
- Yousof Mardoukhi
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
24
|
Cairoli A, Baule A. Langevin formulation of a subdiffusive continuous-time random walk in physical time. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012102. [PMID: 26274120 DOI: 10.1103/physreve.92.012102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Indexed: 06/04/2023]
Abstract
Systems living in complex nonequilibrated environments often exhibit subdiffusion characterized by a sublinear power-law scaling of the mean square displacement. One of the most common models to describe such subdiffusive dynamics is the continuous-time random walk (CTRW). Stochastic trajectories of a CTRW can be described in terms of the subordination of a normal diffusive process by an inverse Lévy-stable process. Here, we propose an equivalent Langevin formulation of a force-free CTRW without subordination. By introducing a different type of non-Gaussian noise, we are able to express the CTRW dynamics in terms of a single Langevin equation in physical time with additive noise. We derive the full multipoint statistics of this noise and compare it with the scaled Brownian motion (SBM), an alternative stochastic model describing subdiffusive dynamics. Interestingly, these two noises are identical up to the second order correlation functions, but different in the higher order statistics. We extend our formalism to general waiting time distributions and force fields and compare our results with those of the SBM. In the presence of external forces, our proposed noise generates a different class of stochastic processes, resembling a CTRW but with forces acting at all times.
Collapse
Affiliation(s)
- Andrea Cairoli
- School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Adrian Baule
- School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
25
|
Bodrova A, Chechkin AV, Cherstvy AG, Metzler R. Quantifying non-ergodic dynamics of force-free granular gases. Phys Chem Chem Phys 2015; 17:21791-8. [DOI: 10.1039/c5cp02824h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate how non-ergodicity arises in simple mechanistic systems such as force free, dissipative granular gases. This behaviour results from the strong non-stationarity of the process mirrored in the continuous decay of the gas temperature.
Collapse
Affiliation(s)
- Anna Bodrova
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
- Faculty of Physics
| | - Aleksei V. Chechkin
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
- Akhiezer Institute for Theoretical Physics
| | - Andrey G. Cherstvy
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
- Department of Physics
| |
Collapse
|