1
|
Félix NDLC, Centres PM, Ramirez-Pastor AJ, Bustingorry S. Surface growth during random and irreversible multilayer deposition of straight semirigid rods. Phys Rev E 2021; 104:034103. [PMID: 34654155 DOI: 10.1103/physreve.104.034103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/09/2021] [Indexed: 11/07/2022]
Abstract
Surface growth properties during irreversible multilayer deposition of straight semirigid rods on linear and square lattices have been studied by Monte Carlo simulations and analytical considerations. The filling of the lattice is carried out following a generalized random sequential adsorption mechanism where the depositing objects can be adsorbed on the surface forming multilayers. The results of our simulations show that the roughness evolves in time following two different behaviors: an "homogeneous growth regime" at initial times, where the heights of the columns homogeneously increase, and a "segmented growth regime" at long times, where the adsorbed phase is segmented in actively growing columns and inactive nongrowing sites. Under these conditions, the surface growth generated by the deposition of particles of different sizes is studied. At long times, the roughness of the systems increases linearly with time, with growth exponent β=1, at variance with a random deposition of monomers which presents a sublinear behavior (β=1/2). The linear behavior is due to the segmented growth process, as we show using a simple analytical model.
Collapse
Affiliation(s)
- N De La Cruz Félix
- Escuela de Física, Instituto de Física (IFIS), Universidad Autónoma de Santo Domingo, Av Alma Mater, Santo Domingo 10105, República Dominicana
| | - P M Centres
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW, San Luis, Argentina
| | - A J Ramirez-Pastor
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW, San Luis, Argentina
| | - S Bustingorry
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
2
|
Lončarević I, Budinski-Petković L, Šćepanović JR, Jakšić ZM, Vrhovac SB. Random sequential adsorption of lattice animals on a three-dimensional cubic lattice. Phys Rev E 2020; 101:012119. [PMID: 32069607 DOI: 10.1103/physreve.101.012119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Indexed: 11/07/2022]
Abstract
The properties of the random sequential adsorption of objects of various shapes on simple three-dimensional (3D) cubic lattice are studied numerically by means of Monte Carlo simulations. Depositing objects are "lattice animals," made of a certain number of nearest-neighbor sites on a lattice. The aim of this work is to investigate the impact of the geometrical properties of the shapes on the jamming density θ_{J} and on the temporal evolution of the coverage fraction θ(t). We analyzed all lattice animals of size n=1, 2, 3, 4, and 5. A significant number of objects of size n⩾6 were also used to confirm our findings. Approach of the coverage θ(t) to the jamming limit θ_{J} is found to be exponential, θ_{J}-θ(t)∼exp(-t/σ), for all lattice animals. It was shown that the relaxation time σ increases with the number of different orientations m that lattice animals can take when placed on a cubic lattice. Orientations of the lattice animal deposited in two randomly chosen places on the lattice are different if one of them cannot be translated into the other. Our simulations performed for large collections of 3D objects confirmed that σ≅m∈{1,3,4,6,8,12,24}. The presented results suggest that there is no correlation between the number of possible orientations m of the object and the corresponding values of the jamming density θ_{J}. It was found that for sufficiently large objects, changing of the shape has considerably more influence on the jamming density than increasing of the object size.
Collapse
Affiliation(s)
- I Lončarević
- Faculty of Engineering, Trg D. Obradovića 6, Novi Sad 21000, Serbia
| | | | - J R Šćepanović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia
| | - Z M Jakšić
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia
| | - S B Vrhovac
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia
| |
Collapse
|
3
|
Pasinetti PM, Ramirez LS, Centres PM, Ramirez-Pastor AJ, Cwilich GA. Random sequential adsorption on Euclidean, fractal, and random lattices. Phys Rev E 2019; 100:052114. [PMID: 31870032 DOI: 10.1103/physreve.100.052114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 11/07/2022]
Abstract
Irreversible adsorption of objects of different shapes and sizes on Euclidean, fractal, and random lattices is studied. The adsorption process is modeled by using random sequential adsorption algorithm. Objects are adsorbed on one-, two-, and three-dimensional Euclidean lattices, on Sierpinski carpets having dimension d between 1 and 2, and on Erdős-Rényi random graphs. The number of sites is M=L^{d} for Euclidean and fractal lattices, where L is a characteristic length of the system. In the case of random graphs, such a characteristic length does not exist, and the substrate can be characterized by a fixed set of M vertices (sites) and an average connectivity (or degree) g. This paper concentrates on measuring (i) the probability W_{L(M)}(θ) that a lattice composed of L^{d}(M) elements reaches a coverage θ and (ii) the exponent ν_{j} characterizing the so-called jamming transition. The results obtained for Euclidean, fractal, and random lattices indicate that the quantities derived from the jamming probability W_{L(M)}(θ), such as (dW_{L}/dθ)_{max} and the inverse of the standard deviation Δ_{L}, behave asymptotically as M^{1/2}. In the case of Euclidean and fractal lattices, where L and d can be defined, the asymptotic behavior can be written as M^{1/2}=L^{d/2}=L^{1/ν_{j}}, with ν_{j}=2/d.
Collapse
Affiliation(s)
- P M Pasinetti
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis, CONICET, Ejército de Los Andes 950, D5700HHW San Luis, San Luis, Argentina
| | - L S Ramirez
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis, CONICET, Ejército de Los Andes 950, D5700HHW San Luis, San Luis, Argentina
| | - P M Centres
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis, CONICET, Ejército de Los Andes 950, D5700HHW San Luis, San Luis, Argentina
| | - A J Ramirez-Pastor
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis, CONICET, Ejército de Los Andes 950, D5700HHW San Luis, San Luis, Argentina
| | - G A Cwilich
- Department of Physics, Yeshiva University, 500 West 185th Street, New York, New York 10033, USA
| |
Collapse
|
4
|
Budinski-Petković L, Lončarević I, Dujak D, Karač A, Šćepanović JR, Jakšić ZM, Vrhovac SB. Particle morphology effects in random sequential adsorption. Phys Rev E 2017; 95:022114. [PMID: 28297898 DOI: 10.1103/physreve.95.022114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 11/07/2022]
Abstract
The properties of the random sequential adsorption of objects of various shapes on a two-dimensional triangular lattice are studied numerically by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps, whereby the size of the objects is gradually increased by wrapping the walks in several different ways. The aim of this work is to investigate the impact of the geometrical properties of the shapes on the jamming density θ_{J} and on the temporal evolution of the coverage fraction θ(t). Our results suggest that the order of symmetry axis of a shape exerts a decisive influence on adsorption kinetics near the jamming limit θ_{J}. The decay of probability for the insertion of a new particle onto a lattice is described in a broad range of the coverage θ by the product between the linear and the stretched exponential function for all examined objects. The corresponding fitting parameters are discussed within the context of the shape descriptors, such as rotational symmetry and the shape factor (parameter of nonsphericity) of the objects. Predictions following from our calculations suggest that the proposed fitting function for the insertion probability is consistent with the exponential approach of the coverage fraction θ(t) to the jamming limit θ_{J}.
Collapse
Affiliation(s)
| | - I Lončarević
- Faculty of Engineering, Trg D. Obradovića 6, Novi Sad 21000, Serbia
| | - D Dujak
- Faculty of Metallurgy and Materials, University of Zenica, Zenica, Bosnia and Herzegovina
| | - A Karač
- Polytechnic Faculty, University of Zenica, Zenica, Bosnia and Herzegovina
| | - J R Šćepanović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia
| | - Z M Jakšić
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia
| | - S B Vrhovac
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia
| |
Collapse
|
5
|
Hart RC, Aarão Reis FDA. Random sequential adsorption of polydisperse mixtures on lattices. Phys Rev E 2016; 94:022802. [PMID: 27627372 DOI: 10.1103/physreve.94.022802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Indexed: 11/06/2022]
Abstract
Random sequential adsorption of linear and square particles with excluded volume interaction is studied numerically on planar lattices considering Gaussian distributions of lateral sizes of the incident particles, with several values of the average μ and of the width-to-average ratio w. When the coverage θ is plotted as function of the logarithm of time t, the maximum slope is attained at a time t_{M} of the same order of the time τ of incidence of one monolayer, which is related to the molecular flux and/or sticking coefficients. For various μ and w, we obtain 1.5τ<t_{M}<5τ for linear particles and 0.3τ<t_{M}<τ for square particles. At t_{M}, the coverages with linear and square particles are near 0.3 and 0.2, respectively. Extrapolations show that coverages may vary with μ up to 20% and 2% for linear and square particles, respectively, for μ≥64, fixed time, and constant w. All θ vs logt plots have approximately the same shape, but other quantities measured at times of order t_{M} help to distinguish narrow and broad incident distributions. The adsorbed particle-size distributions are close to the incident ones up to long times for small w, but appreciably change in time for larger w, acquiring a monotonically decreasing shape for w=1/2 at times of order 100τ. At t_{M}, incident and adsorbed distributions are approximately the same for w≤1/8 and show significant differences for w≥1/2; this result may be used as a consistency test in applications of the model. The pair correlation function g(r,t) for w≤1/8 has a well defined oscillatory structure at 10t_{M}, with a minimum at r≈μ and maximum at r≈1.5μ, but this structure is not observed for w≥1/4.
Collapse
Affiliation(s)
- R C Hart
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil
| | - F D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil
| |
Collapse
|
6
|
Popov AV, Craven GT, Hernandez R. Nonequilibrium structure in sequential assembly. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052108. [PMID: 26651648 DOI: 10.1103/physreve.92.052108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 06/05/2023]
Abstract
The assembly of monomeric constituents into molecular superstructures through sequential-arrival processes has been simulated and theoretically characterized. When the energetic interactions allow for complete overlap of the particles, the model is equivalent to that of the sequential absorption of soft particles on a surface. In the present work, we consider more general cases by including arbitrary aggregating geometries and varying prescriptions of the connectivity network. The resulting theory accounts for the evolution and final-state configurations through a system of equations governing structural generation. We find that particle geometries differ significantly from those in equilibrium. In particular, variations of structural rigidity and morphology tune particle energetics and result in significant variation in the nonequilibrium distributions of the assembly in comparison to the corresponding equilibrium case.
Collapse
Affiliation(s)
- Alexander V Popov
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Galen T Craven
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|