1
|
Grebenkov DS. Encounter-based approach to the escape problem. Phys Rev E 2023; 107:044105. [PMID: 37198799 DOI: 10.1103/physreve.107.044105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/23/2023] [Indexed: 05/19/2023]
Abstract
We revise the encounter-based approach to imperfect diffusion-controlled reactions, which employs the statistics of encounters between a diffusing particle and the reactive region to implement surface reactions. We extend this approach to deal with a more general setting, in which the reactive region is surrounded by a reflecting boundary with an escape region. We derive a spectral expansion for the full propagator and investigate the behavior and probabilistic interpretations of the associated probability flux density. In particular, we obtain the joint probability density of the escape time and the number of encounters with the reactive region before escape, and the probability density of the first-crossing time of a prescribed number of encounters. We briefly discuss generalizations of the conventional Poissonian-type surface reaction mechanism described by Robin boundary condition and potential applications of this formalism in chemistry and biophysics.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée, CNRS-Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
2
|
Benkhadaj Z, Grebenkov DS. Encounter-based approach to diffusion with resetting. Phys Rev E 2022; 106:044121. [PMID: 36397494 DOI: 10.1103/physreve.106.044121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
An encounter-based approach consists in using the boundary local time as a proxy for the number of encounters between a diffusing particle and a target to implement various surface reaction mechanisms on that target. In this paper, we investigate the effects of stochastic resetting onto diffusion-controlled reactions in bounded confining domains. We first discuss the effect of position resetting onto the propagator and related quantities; in this way, we retrieve a number of earlier results but also provide complementary insights into them. Second, we introduce boundary local time resetting and investigate its impact. Curiously, we find that this type of resetting does not alter the conventional propagator governing the diffusive dynamics in the presence of a partially reactive target with a constant reactivity. In turn, the generalized propagator for other surface reaction mechanisms can be significantly affected. Our general results are illustrated for diffusion on an interval with reactive end points. Further perspectives and some open problems are discussed.
Collapse
Affiliation(s)
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
3
|
Chaigneau A, Grebenkov DS. First-passage times to anisotropic partially reactive targets. Phys Rev E 2022; 105:054146. [PMID: 35706315 DOI: 10.1103/physreve.105.054146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
We investigate restricted diffusion in a bounded domain towards a small partially reactive target in three- and higher-dimensional spaces. We propose a simple explicit approximation for the principal eigenvalue of the Laplace operator with mixed Robin-Neumann boundary conditions. This approximation involves the harmonic capacity and the surface area of the target, the volume of the confining domain, the diffusion coefficient, and the reactivity. The accuracy of the approximation is checked by using a finite-elements method. The proposed approximation determines also the mean first-reaction time, the long-time decay of the survival probability, and the overall reaction rate on that target. We identify the relevant lengthscale of the target, which determines its trapping capacity, and we investigate its relation to the target shape. In particular, we study the effect of target anisotropy on the principal eigenvalue by computing the harmonic capacity of prolate and oblate spheroids in various space dimensions. Some implications of these results in chemical physics and biophysics are briefly discussed.
Collapse
Affiliation(s)
- Adrien Chaigneau
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
| |
Collapse
|
4
|
Grebenkov DS. Depletion of resources by a population of diffusing species. Phys Rev E 2022; 105:054402. [PMID: 35706291 DOI: 10.1103/physreve.105.054402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Depletion of natural and artificial resources is a fundamental problem and a potential cause of economic crises, ecological catastrophes, and death of living organisms. Understanding the depletion process is crucial for its further control and optimized replenishment of resources. In this paper, we investigate a stock depletion by a population of species that undergo an ordinary diffusion and consume resources upon each encounter with the stock. We derive the exact form of the probability density of the random depletion time, at which the stock is exhausted. The dependence of this distribution on the number of species, the initial amount of resources, and the geometric setting is analyzed. Future perspectives and related open problems are discussed.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
5
|
Grebenkov DS. Surface hopping propagator: An alternative approach to diffusion-influenced reactions. Phys Rev E 2020; 102:032125. [PMID: 33075930 DOI: 10.1103/physreve.102.032125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Dynamics of a particle diffusing in a confinement can be seen a sequence of bulk-diffusion-mediated hops on the confinement surface. Here, we investigate the surface hopping propagator that describes the position of the diffusing particle after a prescribed number of encounters with that surface. This quantity plays the central role in diffusion-influenced reactions and determines their most common characteristics such as the propagator, the first-passage time distribution, and the reaction rate. We derive explicit formulas for the surface hopping propagator and related quantities for several Euclidean domains: half-space, circular annuli, circular cylinders, and spherical shells. These results provide the theoretical ground for studying diffusion-mediated surface phenomena. The behavior of the surface hopping propagator is investigated for both "immortal" and "mortal" particles.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
6
|
Grebenkov DS. Paradigm Shift in Diffusion-Mediated Surface Phenomena. PHYSICAL REVIEW LETTERS 2020; 125:078102. [PMID: 32857533 DOI: 10.1103/physrevlett.125.078102] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Diffusion-mediated surface phenomena are crucial for human life and industry, with examples ranging from oxygen capture by lung alveolar surface to heterogeneous catalysis, gene regulation, membrane permeation, and filtration processes. Their current description via diffusion equations with mixed boundary conditions is limited to simple surface reactions with infinite or constant reactivity. In this Letter, we propose a probabilistic approach based on the concept of boundary local time to investigate the intricate dynamics of diffusing particles near a reactive surface. Reformulating surface-particle interactions in terms of stopping conditions, we obtain in a unified way major diffusion-reaction characteristics such as the propagator, the survival probability, the first-passage time distribution, and the reaction rate. This general formalism allows us to describe new surface reaction mechanisms such as for instance surface reactivity depending on the number of encounters with the diffusing particle that can model the effects of catalyst fooling or membrane degradation. The disentanglement of the geometric structure of the medium from surface reactivity opens far-reaching perspectives for modeling, optimization, and control of diffusion-mediated surface phenomena.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
7
|
Grebenkov DS. Diffusion toward non-overlapping partially reactive spherical traps: Fresh insights onto classic problems. J Chem Phys 2020; 152:244108. [PMID: 32610945 DOI: 10.1063/5.0012719] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Several classic problems for particles diffusing outside an arbitrary configuration of non-overlapping partially reactive spherical traps in three dimensions are revisited. For this purpose, we describe the generalized method of separation of variables for solving boundary value problems of the associated modified Helmholtz equation. In particular, we derive a semi-analytical solution for the Green function that is the key ingredient to determine various diffusion-reaction characteristics such as the survival probability, the first-passage time distribution, and the reaction rate. We also present modifications of the method to determine numerically or asymptotically the eigenvalues and eigenfunctions of the Laplace operator and the Dirichlet-to-Neumann operator in such perforated domains. Some potential applications in chemical physics and biophysics are discussed, including diffusion-controlled reactions for mortal particles.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS - Ecole Polytechnique, IP Paris 91128, Palaiseau, France
| |
Collapse
|
8
|
Grebenkov DS. Probability distribution of the boundary local time of reflected Brownian motion in Euclidean domains. Phys Rev E 2019; 100:062110. [PMID: 31962414 DOI: 10.1103/physreve.100.062110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 06/10/2023]
Abstract
How long does a diffusing molecule spend in a close vicinity of a confining boundary or a catalytic surface? This quantity is determined by the boundary local time, which plays thus a crucial role in the description of various surface-mediated phenomena, such as heterogeneous catalysis, permeation through semipermeable membranes, or surface relaxation in nuclear magnetic resonance. In this paper, we obtain the probability distribution of the boundary local time in terms of the spectral properties of the Dirichlet-to-Neumann operator. We investigate the short-time and long-time asymptotic behaviors of this random variable for both bounded and unbounded domains. This analysis provides complementary insights onto the dynamics of diffusing molecules near partially reactive boundaries.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
9
|
Piazza F, Grebenkov D. Diffusion-influenced reactions on non-spherical partially absorbing axisymmetric surfaces. Phys Chem Chem Phys 2019; 21:25896-25906. [PMID: 31742309 DOI: 10.1039/c9cp03957k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The calculation of the diffusion-controlled reaction rate for partially absorbing, non-spherical boundaries presents a formidable problem of broad relevance. In this paper we take the reference case of a spherical boundary and work out a perturbative approach to get a simple analytical formula for the first-order correction to the diffusive flux onto a non-spherical partially absorbing surface of revolution. To assess the range of validity of this formula, we derive exact and approximate expressions for the reaction rate in the case of partially absorbing prolate and oblate spheroids. We also present numerical solutions by a finite-element method that extend the validity analysis beyond spheroidal shapes. Our perturbative solution provides a handy way to quantify the effect of non-sphericity on the rate of capture in the general case of partial surface reactivity.
Collapse
Affiliation(s)
- Francesco Piazza
- Centre de Biophysique Moléculaire (CBM) CNRS UPR4301 & Université d'Orléans, Orléans 45071, France.
| | | |
Collapse
|
10
|
Pal A, Castillo IP, Kundu A. Motion of a Brownian particle in the presence of reactive boundaries. Phys Rev E 2019; 100:042128. [PMID: 31770986 DOI: 10.1103/physreve.100.042128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 06/10/2023]
Abstract
We study the one-dimensional motion of a Brownian particle inside a confinement described by two reactive boundaries which can partially reflect or absorb the particle. Understanding the effects of such boundaries is important in physics, chemistry, and biology. We compute the probability density of the particle displacement exactly, from which we derive expressions for the survival probability and the mean absorption time as a function of the reactive coefficients. Furthermore, using the Feynman-Kac formalism, we investigate the local time profile, which is the fluctuating time spent by the particle at a given location, both till a fixed observation time and till the absorption time. Our analytical results are compared to numerical simulations, showing perfect agreement.
Collapse
Affiliation(s)
- Arnab Pal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Center for the Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel; and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Isaac Pérez Castillo
- Department of Quantum Physics and Photonics, Institute of Physics, UNAM, P.O. Box 20-364, 01000 Mexico City, Mexico and London Mathematical Laboratory, 8 Margravine Gardens, London, W6 8RH, United Kingdom
| | - Anupam Kundu
- International Centre for Theoretical Sciences, TIFR, Bangalore 560089, India
| |
Collapse
|
11
|
Grebenkov DS. Spectral theory of imperfect diffusion-controlled reactions on heterogeneous catalytic surfaces. J Chem Phys 2019; 151:104108. [DOI: 10.1063/1.5115030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS – Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
12
|
Abstract
We introduce and investigate the escape problem for random walkers that may eventually die, decay, bleach, or lose activity during their diffusion towards an escape or reactive region on the boundary of a confining domain. In the case of a first-order kinetics (i.e., exponentially distributed lifetimes), we study the effect of the associated death rate onto the survival probability, the exit probability, and the mean first passage time. We derive the upper and lower bounds and some approximations for these quantities. We reveal three asymptotic regimes of small, intermediate, and large death rates. General estimates and asymptotics are compared to several explicit solutions for simple domains and to numerical simulations. These results allow one to account for stochastic photobleaching of fluorescent tracers in bio-imaging, degradation of mRNA molecules in genetic translation mechanisms, or high mortality rates of spermatozoa in the fertilization process. Our findings provide a mathematical ground for optimizing storage containers and materials to reduce the risk of leakage of dangerous chemicals or nuclear wastes.
Collapse
Affiliation(s)
- D. S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS – Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France
| | - J.-F. Rupprecht
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
13
|
Grebenkov DS. First passage times for multiple particles with reversible target-binding kinetics. J Chem Phys 2017; 147:134112. [DOI: 10.1063/1.4996395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS–Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau,
France and Interdisciplinary Scientific Center Poncelet (ISCP) (UMI 2615 CNRS/IUM/IITP RAS/Steklov MI RAS/Skoltech/HSE), Bolshoy
Vlasyevskiy Pereulok 11, 119002 Moscow, Russia
| |
Collapse
|
14
|
Grebenkov DS. Universal Formula for the Mean First Passage Time in Planar Domains. PHYSICAL REVIEW LETTERS 2016; 117:260201. [PMID: 28059537 DOI: 10.1103/physrevlett.117.260201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 06/06/2023]
Abstract
We derive a general exact formula for the mean first passage time (MFPT) from a fixed point inside a planar domain to an escape region on its boundary. The underlying mixed Dirichlet-Neumann boundary value problem is conformally mapped onto the unit disk, solved exactly, and mapped back. The resulting formula for the MFPT is valid for an arbitrary space-dependent diffusion coefficient, while the leading logarithmic term is explicit, simple, and remarkably universal. In contrast to earlier works, we show that the natural small parameter of the problem is the harmonic measure of the escape region, not its perimeter. The conventional scaling of the MFPT with the area of the domain is altered when diffusing particles are released near the escape region. These findings change the current view of escape problems and related chemical or biochemical kinetics in complex, multiscale, porous or fractal domains, while the fundamental relation to the harmonic measure opens new ways of computing and interpreting MFPTs.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France
| |
Collapse
|