Inferring broken detailed balance in the absence of observable currents.
Nat Commun 2019;
10:3542. [PMID:
31387988 PMCID:
PMC6684597 DOI:
10.1038/s41467-019-11051-w]
[Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022] Open
Abstract
Identifying dissipation is essential for understanding the physical mechanisms underlying nonequilibrium processes. In living systems, for example, the dissipation is directly related to the hydrolysis of fuel molecules such as adenosine triphosphate (ATP). Nevertheless, detecting broken time-reversal symmetry, which is the hallmark of dissipative processes, remains a challenge in the absence of observable directed motion, flows, or fluxes. Furthermore, quantifying the entropy production in a complex system requires detailed information about its dynamics and internal degrees of freedom. Here we introduce a novel approach to detect time irreversibility and estimate the entropy production from time-series measurements, even in the absence of observable currents. We apply our technique to two different physical systems, namely, a partially hidden network and a molecular motor. Our method does not require complete information about the system dynamics and thus provides a new tool for studying nonequilibrium phenomena.
Non-equilibrium systems with hidden states are relevant for biological systems such as molecular motors. Here the authors introduce a method for quantifying irreversibility in such a system by exploiting the fluctuations in the waiting times of time series data.
Collapse