1
|
Ivanov AO, Elfimova EA. Pair correlations of the easy magnetisation axes of superparamagnetic nanoparticles in a ferrofluid/ferrocomposite. NANOSCALE 2024; 16:15730-15745. [PMID: 39104331 DOI: 10.1039/d4nr00829d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The widespread use of magnetic nanoparticles in modern technologies and medical applications highlights the need for reliable theoretical models that can predict their physical properties. The pair correlation function of two randomly selected superparamagnetic nanoparticles in a ferrofluid/ferrocomposite is studied to depict the joint probability density of the easy magnetisation axes across the planes of parameters of major importance; these are the interaction of ferroparticles with an external magnetic field, the energy of magnetic anisotropy inside the superparamagnetic nanoparticle, and the interparticle magnetic dipole-dipole interaction. Assuming the rotational symmetry of the system, we come to the conclusion that the pair correlations of interest are dependent only on the polar angles, determining the inclinations of the ferroparticle easy axes from the direction of an external magnetic field. The dimer configuration, where two ferroparticles are in close contact along a magnetic field with their easy magnetisation axes aligned, is the most probable. This configuration becomes more pronounced with increasing anisotropy energy, dipolar coupling constant, and external magnetic field.
Collapse
Affiliation(s)
- Alexey O Ivanov
- Ural Federal University, 51 Lenin Avenue, 620000 Ekaterinburg, Russian Federation.
| | - Ekaterina A Elfimova
- Ural Federal University, 51 Lenin Avenue, 620000 Ekaterinburg, Russian Federation.
| |
Collapse
|
2
|
Solovyova AY, Elfimova EA, Ivanov AO. Magnetic properties of textured ferrocomposite consisting of immobilized superparamagnetic nanoparticles. Phys Rev E 2021; 104:064616. [PMID: 35030918 DOI: 10.1103/physreve.104.064616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Wide use of magnetic nanoparticles in modern technologies and biomedical applications requires reliable theoretical models capable of predicting physical properties. Solidification of a ferroparticle suspension under the action of permanent magnetic field allows us to obtain a ferrocomposite, characterized by some orientational texture of the nanoparticle easy magnetization axes. The static magnetic response of this ferrocomposite differs from that of the parent magnetic suspension due to "freezing" of nanoparticle translational and rotational degrees of freedom. Here the superparamagnetic fluctuations of the nanoparticle magnetic moments play a key role in the formation of the ferrocomposite magnetic response depending on the degree of orientational ordering, obtained during synthesis of a ferrocomposite. With the help of statistical mechanics we calculate the magnetization and the initial magnetic susceptibility of the textured ferrocomposite for various temperatures and magnetic field strengths. The easy axis texturing leads to a significant increase of the magnetic properties, and the effect intensifies with the growth of nanoparticle magnetocrystalline anisotropy. Theoretical predictions are supported by Monte Carlo simulations. The obtained results evidence that the texturing of a ferroparticle suspension and transforming it into a textured ferrocomposite are a real way to enhance the magnetic response of these magnetic soft materials.
Collapse
Affiliation(s)
- Anna Yu Solovyova
- Department of Theoretical and Mathematical Physics, Institute of Nature Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Ekaterina A Elfimova
- Department of Theoretical and Mathematical Physics, Institute of Nature Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Alexey O Ivanov
- Department of Theoretical and Mathematical Physics, Institute of Nature Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| |
Collapse
|
3
|
Elizondo-Aguilera LF, Cortés-Morales EC, Zubieta Rico PF, Medina-Noyola M, Castañeda-Priego R, Voigtmann T, Pérez-Ángel G. Arrested dynamics of the dipolar hard sphere model. SOFT MATTER 2020; 16:170-190. [PMID: 31774110 DOI: 10.1039/c9sm00687g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the combined results of molecular dynamics simulations and theoretical calculations concerning various dynamical arrest transitions in a model system representing a dipolar fluid, namely, N (soft core) rigid spheres interacting through a truncated dipole-dipole potential. By exploring different regimes of concentration and temperature, we find three distinct scenarios for the slowing down of the dynamics of the translational and orientational degrees of freedom: at low (η = 0.2) and intermediate (η = 0.4) volume fractions, both dynamics are strongly coupled and become simultaneously arrested upon cooling. At high concentrations (η≥ 0.6), the translational dynamics shows the features of an ordinary glass transition, either by compressing or cooling down the system, but with the orientations remaining ergodic, thus indicating the existence of partially arrested states. In this density regime, but at lower temperatures, the relaxation of the orientational dynamics also freezes. The physical scenario provided by the simulations is discussed and compared against results obtained with the self-consistent generalized Langevin equation theory, and both provide a consistent description of the dynamical arrest transitions in the system. Our results are summarized in an arrested states diagram which qualitatively organizes the simulation data and provides a generic picture of the glass transitions of a dipolar fluid.
Collapse
Affiliation(s)
- Luis F Elizondo-Aguilera
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), 51170 Köln, Germany.
| | - Ernesto C Cortés-Morales
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Pablo F Zubieta Rico
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Magdaleno Medina-Noyola
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), 51170 Köln, Germany. and Department of Physics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gabriel Pérez-Ángel
- Departamento de Física Aplicada, CINVESTAV del IPN, A. P. 73 "Cordemex", 97310 Mérida, Yucatán, Mexico
| |
Collapse
|
4
|
Geier IS, Wandrei SM, Skutnik RA, Schoen M. Molecular theory of a ferromagnetic nematic liquid crystal. Phys Rev E 2019; 100:022702. [PMID: 31574629 DOI: 10.1103/physreve.100.022702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 06/10/2023]
Abstract
We employ a version of classical density functional theory to study the phase behavior of a simple model liquid crystal in an external field. The uniaxially symmetric molecules have a spherically symmetric core with superimposed orientation-dependent attractions. The interaction between the cores consists of a hard-sphere repulsion plus an isotropic square-well attraction. The anisotropic part of the interaction potential allows for the formation of a uniaxially symmetric nematic phase. The orientation of the molecules couples to an external polar field. The external field is capable of rotating the nematic director n[over ̂] in the x-z plane. The field is also capable of changing the topology of the phase diagram in that it suppresses the phase coexistence between an isotropic liquid and a nematic phase observed in the absence of the field. We study the transition from an unpolar to a polar nematic phase in terms of the orientation-distribution function (odf), nematic and polar order parameters, and components of n[over ̂]. If represented suitably the odf allows us to study orientational changes during the switching process between nonpolar and polar nematic phases. We also give a simple argument that explains why nematic order is lost whereas polar order persists up to the gas-liquid critical point along the coexistence curve. We also discuss the relevance of our theory for future experimental studies.
Collapse
Affiliation(s)
- Immanuel S Geier
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Stefanie M Wandrei
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Robert A Skutnik
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Department of Chemical and Biomolecular Engineering, Engineering Building I, Box 7905, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, USA
| |
Collapse
|
5
|
Wandrei SM, Roth R, Schoen M. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. II. The interplay between molecular packing and orientational order. J Chem Phys 2018; 149:054704. [PMID: 30089380 DOI: 10.1063/1.5040934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As in Paper I of this series of papers [S. M. Cattes et al., J. Chem. Phys. 144, 194704 (2016)], we study a Heisenberg fluid confined to a nanoscopic slit pore with smooth walls. The pore walls can either energetically discriminate specific orientations of the molecules next to them or are indifferent to molecular orientations. Unlike in Paper I, we employ a version of classical density functional theory that allows us to explicitly account for the stratification of the fluid (i.e., the formation of molecular layers) as a consequence of the symmetry-breaking presence of the pore walls. We treat this stratification within the White Bear version (Mark I) of fundamental measure theory. Thus, in this work, we focus on the interplay between local packing of the molecules and orientational features. In particular, we demonstrate why a critical end point can only exist if the pore walls are not energetically discriminating specific molecular orientations. We analyze in detail the positional and orientational order of the confined fluid and show that reorienting molecules across the pore space can be a two-dimensional process. Last but not least, we propose an algorithm based upon a series expansion of Bessel functions of the first kind with which we can solve certain types of integrals in a very efficient manner.
Collapse
Affiliation(s)
- Stefanie M Wandrei
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Roland Roth
- Institut für Theoretische Physik, Mathematisch-Naturwissenschaftliche Fakultät, Eberhard-Karls-Universität, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
6
|
Wandrei SM, McCarthy DG, Schoen M. Phase Behavior of Magnetic Nanocolloids of Different Sizes Suspended in an Apolar Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11366-11376. [PMID: 28764322 DOI: 10.1021/acs.langmuir.7b01952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We employ classical density functional theory (DFT) to investigate the phase behavior and composition of binary mixtures; each compound consists of hard spheres of different sizes with superimposed dispersion attraction. In addition to the dispersion attraction, molecules of one component carry an additional three-dimensional magnetic "spin" where the orientation-dependent spin-spin interaction is accounted for by the Heisenberg model. We are treating the excess free energy using a modified mean-field approximation (second virial coefficient) for the orientation-dependent pair correlation function. Depending on the concentration of the magnetic particles, the strength of the spin-spin coupling, and the size ratio of the particles, the model predicts the formation of ordered (polar) phases in addition to the more conventional gas and isotropic liquid phases. Key features of our model are a particle-size dependent shift of the gas-liquid critical point (critical temperature and density) and a change in the width of the phase diagram. In the near-critical region, the latter can be analyzed quantitativly in terms of an effective critical exponent βeff that may differ from the classical critical exponent [Formula: see text]; the classical value is attained in the immediate vicinity of the critical point as it must. The deviation between βeff and β can be linked to nontrivial composition effects along the phase boundaries.
Collapse
Affiliation(s)
- Stefanie M Wandrei
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin , Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Dannielle G McCarthy
- Department of Chemistry, Stanford University , 333 Campus Dr., Stanford, California 94305, United States
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin , Straße des 17. Juni 115, 10623 Berlin, Germany
- Department of Chemical and Biomolecular Engineering, Engineering Building I, Box 7905, North Carolina State University , 911 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Araújo NAM, Zezyulin DA, Konotop VV, Telo da Gama MM. Dynamic Design of Spatial Patterns of Colloidal Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11698-11702. [PMID: 28732162 DOI: 10.1021/acs.langmuir.7b01920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the collective dynamics of colloidal suspensions in the presence of a time-dependent potential by means of dynamic density functional theory. We consider a nonlinear diffusion equation for the density and show that spatial patterns emerge from a sinusoidal external potential with a time-dependent wavelength. These patterns are characterized by a sinusoidal density with the average wavelength and a Bessel-function envelope with an induced wavelength that depends only on the amplitude of the temporal oscillations. As a generalization of this result, we propose a design strategy to obtain a family of spatial patterns using time-dependent potentials of practically arbitrary shape.
Collapse
Affiliation(s)
- N A M Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa , P-1749-016 Lisboa, Portugal
- Centro de Física Teórica e Computacional, Faculdad de Ciências, Universidade de Lisboa , P-1749-016 Lisboa, Portugal
| | - D A Zezyulin
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa , P-1749-016 Lisboa, Portugal
- Centro de Física Teórica e Computacional, Faculdad de Ciências, Universidade de Lisboa , P-1749-016 Lisboa, Portugal
- ITMO University , St. Petersburg 197101, Russia
- Institute of Mathematics with Computer Center, Ufa Scientific Center, Russian Academy of Sciences, Chernyshevskii str. 112, Ufa 450008, Russia
| | - V V Konotop
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa , P-1749-016 Lisboa, Portugal
- Centro de Física Teórica e Computacional, Faculdad de Ciências, Universidade de Lisboa , P-1749-016 Lisboa, Portugal
| | - M M Telo da Gama
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa , P-1749-016 Lisboa, Portugal
- Centro de Física Teórica e Computacional, Faculdad de Ciências, Universidade de Lisboa , P-1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Schoen M, Haslam AJ, Jackson G. Perturbation Theory versus Thermodynamic Integration. Beyond a Mean-Field Treatment of Pair Correlations in a Nematic Model Liquid Crystal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11345-11365. [PMID: 28772076 DOI: 10.1021/acs.langmuir.7b01849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.
Collapse
Affiliation(s)
- Martin Schoen
- Department of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Andrew J Haslam
- Department of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Wilke N, Bugase J, Treffenstädt LM, Fischer TM. Wrinkled labyrinths in critical demixing ferrofluid. SOFT MATTER 2017; 13:7307-7311. [PMID: 28951924 DOI: 10.1039/c7sm01475a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A thin film of a critical ferrofluid mixture undergoes a sequence of transitions in a magnetic field. First the application of a field induces a critical demixing of the fluid into cylindrical droplets of the minority phase immersed in an extended majority phase. At a second critical field the cylindrical shape is destabilized and transforms into a labyrinth pattern. A third wrinkling transition occurs at even higher field if the liquid has a liquid/air interface. The wrinkling is absent if the droplet has a cover-slide on top. We explain the wrinkling by the wetting behavior of the liquid/air interface that shifts the surface region away from a critical demixing point.
Collapse
Affiliation(s)
- Natalia Wilke
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|
10
|
Bugase J, Berner J, Fischer TM. Magnetic field induced modulated phases in a ferrofluid lutidine silicone oil mixture. SOFT MATTER 2016; 12:8521-8527. [PMID: 27714332 DOI: 10.1039/c6sm01713d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A mixture of an ester based ferrofluid with silicone oil and 2,6-lutidine is exposed to an external magnetic field. We find a region of composition of the ternary mixture, where weak magnetic fields of the order of a few kA m-1 induce a modulated phase with a pattern characterized by equilibrium size droplets of the minority phase immersed into the extended majority phase. While the pattern resembles in many ways the pattern of immiscible magnetic fluids, the dependence of the characteristic parameters of the pattern on the magnetic field are completely different than in immiscible fluids. We theoretically explain the pattern formation as a magnetic field induced polymerization of magnetic particles into magnetic chains that goes along with a reduction of the entropy of mixing. This entropy reduction causes the Ostwald ripening of chains into mesoscopic droplets the size of which is limited by repulsive dipolar interactions between the chains.
Collapse
Affiliation(s)
- Jonas Bugase
- Institute of Physics Universität Bayreuth, 95440 Bayreuth, Germany.
| | - Johannes Berner
- Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Thomas M Fischer
- Institute of Physics Universität Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
11
|
Pessot G, Löwen H, Menzel AM. Dynamic elastic moduli in magnetic gels: Normal modes and linear response. J Chem Phys 2016; 145:104904. [DOI: 10.1063/1.4962365] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Giorgio Pessot
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Cattes SM, Gubbins KE, Schoen M. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring. J Chem Phys 2016; 144:194704. [PMID: 27208962 DOI: 10.1063/1.4949330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
Collapse
Affiliation(s)
- Stefanie M Cattes
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Keith E Gubbins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building I, Box 7905, 911 Partners Way, Raleigh, North Carolina 27695, USA
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
13
|
Nunes AS, Araújo NAM, Telo da Gama MM. Self-assembly of colloidal bands driven by a periodic external field. J Chem Phys 2016; 144:034902. [DOI: 10.1063/1.4939951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- André S. Nunes
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Nuno A. M. Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Margarida M. Telo da Gama
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| |
Collapse
|