1
|
Khaothong K, Osaklung J, Sutthiopad M, Luengviriya J, Showalter K, Luengviriya C. Effect of excitability on partially pinned scroll waves in excitable chemical media. Phys Rev E 2023; 108:054201. [PMID: 38115415 DOI: 10.1103/physreve.108.054201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023]
Abstract
We present an investigation of excitability effects on the dynamics of scroll waves partially pinned to inert cylindrical obstacles in three-dimensional Belousov-Zhabotinsky excitable media. We also report on corresponding numerical simulations with the Oregonator model. The excitability varies according to the concentration of sulfuric acid [H_{2}SO_{4}] in the Belousov-Zhabotinsky (BZ) reaction and the parameter ɛ^{-1} in the Oregonator model. Initially, the freely rotating scroll segment rotates faster than the pinned one. The difference in the frequency of the two parts results in a transition from a straight pinned scroll wave to a twisted one, which helically wraps around the entire obstacle. The wave frequency in the whole volume is equal to that of the freely rotating scroll wave. When the excitability is increased, the time for the transition to the twisted wave structure decreases while the average speed s of the development increases. After the transition, the twisted wave remains stable. In media with higher excitability, the helical pitch is shorter but the twist rate ω is higher. Analysis presented in this study together with our previous findings of the effect of the cylindrical obstacle diameter on the wave dynamics results in common features: The average speed s and the twist rate ω of both studies fit well to functions of the difference in the initial frequency Δf of the freely rotating and untwisted pinned waves. We also demonstrate the robustness of the partially pinned scroll waves against perturbations from spontaneous waves emerging during the wave generation in the BZ medium with high [H_{2}SO_{4}]. Even though the scroll wave is partly disturbed at the beginning of the experiment, the spontaneous waves are gradually suppressed and the typical wave structure is finally developed.
Collapse
Affiliation(s)
- Kritsana Khaothong
- Department of Physics, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
| | - Jarin Osaklung
- Department of Physics, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
| | - Malee Sutthiopad
- Department of Physics, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
| | - Jiraporn Luengviriya
- Lasers and Optics Research Center, Department of Industrial Physics and Medical Instrumentation, King Mongkut's University of Technology North Bangkok, 1518 Pibulsongkram Road, Bangkok 10800, Thailand
| | - Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Chaiya Luengviriya
- Department of Physics, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Amrutha SV, Sebastian A, Sibeesh P, Punacha S, Shajahan TK. Theory and experiments of spiral unpinning in the Belousov-Zhabotinsky reaction using a circularly polarized electric field. CHAOS (WOODBURY, N.Y.) 2023; 33:063157. [PMID: 37368041 DOI: 10.1063/5.0145251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
We present the first experimental study of unpinning an excitation wave using a circularly polarized electric field. The experiments are conducted using the excitable chemical medium, the Belousov-Zhabotinsky (BZ) reaction, which is modeled with the Oregenator model. The excitation wave in the chemical medium is charged so that it can directly interact with the electric field. This is a unique feature of the chemical excitation wave. The mechanism of wave unpinning in the BZ reaction with a circularly polarized electric field is investigated by varying the pacing ratio, the initial phase of the wave, and field strength. The chemical wave in the BZ reaction unpins when the electric force opposite the direction of the spiral is equal to or above a threshold. We developed an analytical relation of the unpinning phase with the initial phase, the pacing ratio, and the field strength. This is then verified in experiments and simulations.
Collapse
Affiliation(s)
- S V Amrutha
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Anupama Sebastian
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Puthiyapurayil Sibeesh
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Shreyas Punacha
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington 98195, USA
| | - T K Shajahan
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| |
Collapse
|
3
|
Kalita H, Khan P, Dutta S. Rotational synchronization of pinned spiral waves. Phys Rev E 2022; 106:034201. [PMID: 36266837 DOI: 10.1103/physreve.106.034201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Coupled rotors can spontaneously synchronize, giving rise to a plethora of intriguing dynamics. We present here a pair of spiral waves as two synchronizing rotors, coupled by diffusion. The spirals are pinned to unexcitable obstacles, which enables us to modify their frequencies and restrain their drift. In experiments with the Belousov-Zhabotinsky reaction, we show that two counterrotating spiral rotors, pinned to circular heterogeneities, can synchronize in frequency and phase. The nature of the phase synchronization varies depending on the difference in their characteristic frequencies. We observe in-phase and out-of-phase synchronization, lag synchronization, and phase resetting across the experiments. The time required for the two spirals to synchronize is found to depend upon the relative size of their pinning obstacles and the distance separating them. This distance can also modify the phase lag of the two rotors upon synchronization. Our experimental observations are reproduced and explained further on the basis of numerical simulations of an excitable reaction-diffusion model.
Collapse
Affiliation(s)
- Hrishikesh Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Parvej Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sumana Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
4
|
Influence of a circular obstacle on the dynamics of stable spiral waves with straining. Sci Rep 2022; 12:14479. [PMID: 36008513 PMCID: PMC9411171 DOI: 10.1038/s41598-022-18602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
The current study envisages to investigate numerically, probably for the first time, the combined effect of a circular obstacle and medium motion on the dynamics of a stable rotating spiral wave. A recently reconstructed spatially fourth and temporally second order accurate, implicit, unconditionally stable high order compact scheme has been employed to carry out simulations of the Oregonator model of excitable media. Apart from studying the effect of the stoichiometric parameter, we provide detailed comparison between the dynamics of spiral waves with and without the circular obstacles in the presence of straining effect. In the process, we also inspect the dynamics of rigidly rotating spiral waves without straining effect in presence of the circular obstacle. The presence of the obstacle was seen to trigger transition to non-periodic motion for a much lower strain rate.
Collapse
|
5
|
Zanotto FM, Steinbock O. Asymmetric synchronization in lattices of pinned spiral waves. Phys Rev E 2021; 103:022213. [PMID: 33736004 DOI: 10.1103/physreve.103.022213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/03/2021] [Indexed: 11/07/2022]
Abstract
Networks of coupled oscillators show a wealth of fascinating dynamics and are capable of storing and processing information. In biological and social networks, the coupling is often asymmetric. We use the chirality of rotating spiral waves to introduce this asymmetry in an excitable reaction-diffusion model. The individual vortices are pinned to unexcitable disks and arranged at a constant spacing L along straight lines or simple geometric patterns. In the case of periodic boundaries or pinning disks arranged along the edge of a closed shape, small L values lead to synchronization via repeated wave collisions. The rate of synchronization as a function of L shows a single maximum and is determined by the dispersion behavior of a continuous wave train traveling along the system boundary. For finite systems, spirals are affected by their upstream neighbor, and a single dominant spiral exists along each chain. Specific initial conditions can decouple neighboring vortices even for small L values. We also present a time-delay differential equation that reproduces the phase dynamics in periodic systems.
Collapse
Affiliation(s)
- Franco M Zanotto
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA
| | - Oliver Steinbock
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
6
|
Ponboonjaroenchai B, Luengviriya J, Sutthiopad M, Wungmool P, Kumchaiseemak N, Müller SC, Luengviriya C. Self-organization of multiarmed spiral waves in excitable media. Phys Rev E 2019; 100:042203. [PMID: 31771004 DOI: 10.1103/physreve.100.042203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/07/2022]
Abstract
We present an investigation of self-organized multiarmed spiral waves pinned to unexcitable circular obstacles in a thin layer of the excitable Belousov-Zhabotinsky reaction and in simulations using the Oregonator model. The multiarmed waves are initiated by a series of wave stimuli. In the proximity of the obstacle boundary, the wave rotation around the obstacle causes damped oscillations of the wave periods of all spiral arms. The dynamics of wave periods cause the wave velocities as well as the angular displacements between the adjacent arms to oscillate with decaying amplitudes. Eventually, all displacements approach approximately the same stable value so that all arms are distributed evenly around the obstacle. A further theoretical analysis reveals that the temporal dynamics of the angular displacements can be interpreted as underdamped harmonic oscillations. Far from the obstacles, the wave dynamics are less pronounced. The wave period becomes stable very soon after the initiation. When the number of spiral arms increases, the rotation of individual arms slows down but the wave period of the multiarmed spiral waves decreases. Due to their short period, multiarmed spiral waves emerging in the heart potentially result in severe pathological conditions.
Collapse
Affiliation(s)
| | - Jiraporn Luengviriya
- Lasers and Optics Research Group, Department of Industrial Physics and Medical Instrumentation, King Mongkut's University of Technology North Bangkok, 1518 Pibulsongkram Road, Bangkok 10800, Thailand
| | - Malee Sutthiopad
- Department of Physics, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
| | - Piyachat Wungmool
- Department of Physics, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
| | - Nakorn Kumchaiseemak
- Department of Physics, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
| | - Stefan C Müller
- Institute of Physics,Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Chaiya Luengviriya
- Department of Physics, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
| |
Collapse
|
7
|
Porjai P, Sutthiopad M, Khaothong K, Phantu M, Kumchaiseemak N, Luengviriya J, Showalter K, Luengviriya C. Twisted scroll wave dynamics: partially pinned waves in excitable chemical media. Phys Chem Chem Phys 2019; 21:2419-2425. [PMID: 30649114 DOI: 10.1039/c8cp06948d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an investigation of the dynamics of scroll waves that are partially pinned to inert cylindrical obstacles of varying lengths and diameters in three-dimensional Belousov-Zhabotinsky excitable media. Experiments are carried out in which a scroll wave is initiated with a special orientation to be partially pinned to the obstacle. Numerical simulations with the Oregonator model are also carried out, where the obstacle is placed in the region of the core of a preexisting freely rotating scroll wave. In both cases, the effect of the obstacle on the wave dynamics is almost immediately observable, such that after the first revolution of the wave, the pinned region of the scroll wave has a longer period than that of the freely rotating scroll wave. The dependence of the scroll wave period on the obstacle position gives rise to a transition from a straight scroll wave to a twisted scroll wave in the pinned region, while the form of the freely rotating wave remains unchanged. The twisted scroll wave arises from the interaction of the freely rotating scroll wave with the obstacle, giving rise to a pinned twisted wave with the same period. The twisted scroll wave gradually advances, displacing the slower untwisted scroll wave until the scroll wave helically wraps around the entire obstacle. At this point, the period of the entire wave has a single value equal to that of the freely rotating scroll wave. The time for the transition to the twisted wave structure increases when either the obstacle length is increased or the obstacle diameter is decreased, while the average speed of the development increases with both the obstacle length and diameter. After the transition, the twisted wave remains stable, with its structure depending on the obstacle diameter - the larger the diameter, the shorter the helical pitch but the higher the twist rate.
Collapse
Affiliation(s)
- Porramain Porjai
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, 39, Rangsit-Nakhonnayok Road, Thanyaburi, Pathum Thani 12110, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
8
|
|