1
|
Mishra A, Saha S, Dana SK. Chimeras in globally coupled oscillators: A review. CHAOS (WOODBURY, N.Y.) 2023; 33:092101. [PMID: 37703474 DOI: 10.1063/5.0143872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
The surprising phenomenon of chimera in an ensemble of identical oscillators is no more strange behavior of network dynamics and reality. By this time, this symmetry breaking self-organized collective dynamics has been established in many networks, a ring of non-locally coupled oscillators, globally coupled networks, a three-dimensional network, and multi-layer networks. A variety of coupling and dynamical models in addition to the phase oscillators has been used for a successful observation of chimera patterns. Experimental verification has also been done using metronomes, pendula, chemical, and opto-electronic systems. The phenomenon has also been shown to appear in small networks, and hence, it is not size-dependent. We present here a brief review of the origin of chimera patterns restricting our discussions to networks of globally coupled identical oscillators only. The history of chimeras in globally coupled oscillators is older than what has been reported in nonlocally coupled phase oscillators much later. We elaborate the story of the origin of chimeras in globally coupled oscillators in a chronological order, within our limitations, and with brief descriptions of the significant contributions, including our personal experiences. We first introduce chimeras in non-locally coupled and other network configurations, in general, and then discuss about globally coupled networks in more detail.
Collapse
Affiliation(s)
- Arindam Mishra
- Department of Physics, National University of Singapore, Singapore 117551
| | - Suman Saha
- Cognitive Brain Dynamics Laboratory, National Brain Research Centre, Gurugram 122051, India
| | - Syamal K Dana
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
- Division of Dynamics, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
2
|
Sathiyadevi K, Chandrasekar VK, Lakshmanan M. Emerging chimera states under nonidentical counter-rotating oscillators. Phys Rev E 2022; 105:034211. [PMID: 35428132 DOI: 10.1103/physreve.105.034211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Frequency plays a crucial role in exhibiting various collective dynamics in the coexisting corotating and counter-rotating systems. To illustrate the impact of counter-rotating frequencies, we consider a network of nonidentical and globally coupled Stuart-Landau oscillators with additional perturbation. Primarily, we investigate the dynamical transitions in the absence of perturbation, demonstrating that the transition from desynchronized state to cluster oscillatory state occurs through an interesting partial synchronization state in the oscillatory regime. Following this, the system dynamics transits to amplitude death and oscillation death states. Importantly, we find that the observed dynamical states do not preserve the parity (P) symmetry in the absence of perturbation. When the perturbation is increased one can note that the system dynamics exhibits a kind of transition which corresponds to a change from incoherent mixed synchronization to coherent mixed synchronization through a chimera state. In particular, incoherent mixed synchronization and coherent mixed synchronization states completely preserve the P symmetry, whereas the chimera state preserves the P symmetry only partially. To demonstrate the occurrence of such partial symmetry-breaking (chimera) state, we use basin stability analysis and discover that partial symmetry breaking exists as a result of the coexistence of symmetry-preserving and symmetry-breaking behavior in the initial state space. Further, a measure of the strength of P symmetry is established to quantify the P symmetry in the observed dynamical states. Subsequently, the dynamical transitions are investigated in the parametric spaces. Finally, by increasing the network size, the robustness of the chimera state is also inspected, and we find that the chimera state is robust even in networks of larger sizes. We also show the generality of the above results in the related reduced phase. model as well as in other coupled models such as the globally coupled van der Pol and Rössler oscillators.
Collapse
Affiliation(s)
- K Sathiyadevi
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Department of Physics, Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - M Lakshmanan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
3
|
Chimera states and cluster solutions in Hindmarsh-Rose neural networks with state resetting process. Cogn Neurodyn 2022; 16:215-228. [PMID: 35126779 PMCID: PMC8807783 DOI: 10.1007/s11571-021-09691-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 02/03/2023] Open
Abstract
The neuronal state resetting model is a hybrid system, which combines neuronal system with state resetting process. As the membrane potential reaches a certain threshold, the membrane potential and recovery current are reset. Through the resetting process, the neuronal system can produce abundant new firing patterns. By integrating with the state resetting process, the neuronal system can generate irregular limit cycles (limit cycles with impulsive breakpoints), resulting in repetitive spiking or bursting with firing peaks which can not exceed a presetting threshold. Although some studies have discussed the state resetting process in neurons, it has not been addressed in neural networks so far. In this paper, we consider chimera states and cluster solutions in Hindmarsh-Rose neural networks with state resetting process. The network structures are based on regular ring structures and the connections among neurons are assumed to be bidirectional. Chimera and cluster states are two types of phenomena related to synchronization. For neural networks, the chimera state is a self-organization phenomenon in which some neuronal nodes are synchronous while the others are asynchronous. Cluster synchronization divides the system into several subgroups based on their synchronization characteristics, with neuronal nodes in each subgroup being synchronous. By improving previous chimera measures, we detect the spike inspire time instead of the state variable and calculate the time between two adjacent spikes. We then discuss the incoherence, chimera state, and coherence of the constructed neural networks using phase diagrams, time series diagrams, and probability density histograms. Besides, we further contrast the cluster solutions of the system under local and global coupling, respectively. The subordinate state resetting process enriches the firing mode of the proposed Hindmarsh-Rose neural networks.
Collapse
|
4
|
Singh U, Raina A, Chandrasekar VK, Senthilkumar DV. Nontrivial amplitude death in coupled parity-time-symmetric Liénard oscillators. Phys Rev E 2021; 104:054204. [PMID: 34942732 DOI: 10.1103/physreve.104.054204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
We unravel the collective dynamics exhibited by two coupled nonlinearly damped Liénard oscillators exhibiting parity and time symmetry, which is a classical example of the position-dependent damped systems. The coupled system facilitates the onset of limit-cycle and aperiodic oscillations in addition to large-amplitude oscillations. In particular, a nontrivial amplitude death state emerges as a consequence of balanced linear loss and gain of the coupled PT-symmetric systems, where gain in the amplitude of oscillation in one oscillator is exactly balanced by the loss in the other. Further, quasiperiodic attractors exist in the parameter space of a neutrally stable trivial steady state. We deduce analytical critical curves enclosing the stable regions of a nontrivial fixed point, leading to the manifestation of nontrivial amplitude death state, and neutrally stable trivial steady state. The latter loses its stability leading to the emergence of the former. The analytical critical curves exactly match with the simulation boundaries. There is also a reemergence of dynamical states as a function of the coupling strength and multistability among the observed dynamical states. The basin of attraction provides an explanation for the observed probability of dynamical states.
Collapse
Affiliation(s)
- Uday Singh
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695 551, India
| | - Ankit Raina
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695 551, India
| | - V K Chandrasekar
- Department of Physics, Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695 551, India
| |
Collapse
|
5
|
Kachhara S, Ambika G. Frequency chimera state induced by differing dynamical timescales. Phys Rev E 2021; 104:064214. [PMID: 35030851 DOI: 10.1103/physreve.104.064214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
We report the occurrence of a self-emerging frequency chimera state in spatially extended systems of coupled oscillators, where the coherence and incoherence are defined with respect to the emergent frequency of the oscillations. This is generated by the local coupling among nonlinear oscillators evolving under differing dynamical timescales starting from random initial conditions. We show how they self-organize to structured patterns with spatial domains of coherence that are in frequency synchronization, coexisting with domains that are incoherent in frequencies. Our study has relevance in understanding such patterns observed in real-world systems like neuronal systems, power grids, social and ecological networks, where differing dynamical timescales is natural and realistic among the interacting systems.
Collapse
Affiliation(s)
- Sneha Kachhara
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - G Ambika
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
6
|
Manoranjani M, Gupta S, Chandrasekar VK. The Sakaguchi-Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry. CHAOS (WOODBURY, N.Y.) 2021; 31:083130. [PMID: 34470257 DOI: 10.1063/5.0055664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The celebrated Kuramoto model provides an analytically tractable framework to study spontaneous collective synchronization and comprises globally coupled limit-cycle oscillators interacting symmetrically with one another. The Sakaguchi-Kuramoto model is a generalization of the basic model that considers the presence of a phase lag parameter in the interaction, thereby making it asymmetric between oscillator pairs. Here, we consider a further generalization by adding an interaction that breaks the phase-shift symmetry of the model. The highlight of our study is the unveiling of a very rich bifurcation diagram comprising of both oscillatory and non-oscillatory synchronized states as well as an incoherent state: There are regions of two-state as well as an interesting and hitherto unexplored three-state coexistence arising from asymmetric interactions in our model.
Collapse
Affiliation(s)
- M Manoranjani
- Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, India
| | - Shamik Gupta
- Department of Physics, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math, Howrah 711202, India
| | - V K Chandrasekar
- Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
7
|
León I, Pazó D. Quasi phase reduction of all-to-all strongly coupled λ-ω oscillators near incoherent states. Phys Rev E 2020; 102:042203. [PMID: 33212714 DOI: 10.1103/physreve.102.042203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/10/2020] [Indexed: 11/07/2022]
Abstract
The dynamics of an ensemble of N weakly coupled limit-cycle oscillators can be captured by their N phases using standard phase reduction techniques. However, it is a phenomenological fact that all-to-all strongly coupled limit-cycle oscillators may behave as "quasiphase oscillators," evidencing the need of novel reduction strategies. We introduce, here, quasi phase reduction (QPR), a scheme suited for identical oscillators with polar symmetry (λ-ω systems). By applying QPR, we achieve a reduction to N+2 degrees of freedom: N phase oscillators interacting through one independent complex variable. This "quasi phase model" is asymptotically valid in the neighborhood of incoherent states, irrespective of the coupling strength. The effectiveness of QPR is illustrated in a particular case, an ensemble of Stuart-Landau oscillators, obtaining exact stability boundaries of uniform and nonuniform incoherent states for a variety of couplings. An extension of QPR beyond the neighborhood of incoherence is also explored. Finally, a general QPR model with N+2M degrees of freedom is obtained for coupling through the first M harmonics.
Collapse
Affiliation(s)
- Iván León
- Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, 39005 Santander, Spain
| | - Diego Pazó
- Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, 39005 Santander, Spain
| |
Collapse
|
8
|
Sathiyadevi K, Gowthaman I, Senthilkumar DV, Chandrasekar VK. Aging transition in the absence of inactive oscillators. CHAOS (WOODBURY, N.Y.) 2019; 29:123117. [PMID: 31893654 DOI: 10.1063/1.5121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The role of counter-rotating oscillators in an ensemble of coexisting co- and counter-rotating oscillators is examined by increasing the proportion of the latter. The phenomenon of aging transition was identified at a critical value of the ratio of the counter-rotating oscillators, which was otherwise realized only by increasing the number of inactive oscillators to a large extent. The effect of the mean-field feedback strength in the symmetry preserving coupling is also explored. The parameter space of aging transition was increased abruptly even for a feeble decrease in the feedback strength, and, subsequently, aging transition was observed at a critical value of the feedback strength surprisingly without any counter-rotating oscillators. Further, the study was extended to symmetry breaking coupling using conjugate variables, and it was observed that the symmetry breaking coupling can facilitate the onset of aging transition even in the absence of counter-rotating oscillators and for the unit value of the feedback strength. In general, the parameter space of aging transition was found to increase by increasing the frequency of oscillators and by increasing the proportion of the counter-rotating oscillators in both symmetry preserving and symmetry breaking couplings. Further, the transition from oscillatory to aging occurs via a Hopf bifurcation, while the transition from aging to oscillation death state emerges via the pitchfork bifurcation. Analytical expressions for the critical ratio of the counter-rotating oscillators are deduced to find the stable boundaries of the aging transition.
Collapse
Affiliation(s)
- K Sathiyadevi
- Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - I Gowthaman
- Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - V K Chandrasekar
- Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
9
|
Thoubaan M, Ashwin P. Existence and stability of chimera states in a minimal system of phase oscillators. CHAOS (WOODBURY, N.Y.) 2018; 28:103121. [PMID: 30384640 DOI: 10.1063/1.5044750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
We examine partial frequency locked weak chimera states in a network of six identical and indistinguishable phase oscillators with neighbour and next-neighbour coupling and two harmonic coupling of the form g ( ϕ ) = - sin ( ϕ - α ) + r sin 2 ϕ . We limit to a specific partial cluster subspace, reduce to a two dimensional system in terms of phase differences, and show that this has an integral of motion for α = π / 2 and r = 0 . By careful analysis of the phase space, we show that there is a continuum of neutrally stable weak chimera states in this case. We approximate the Poincaré return map for these weak chimera solutions and demonstrate several results about the stability and bifurcation of weak chimeras for small β = π / 2 - α and r that agree with numerical path-following of the solutions.
Collapse
Affiliation(s)
- Mary Thoubaan
- Centre for Systems, Dynamics and Control, Department of Mathematics, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Peter Ashwin
- Centre for Systems, Dynamics and Control, Department of Mathematics, University of Exeter, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
10
|
Punetha N, Varshney V, Sahoo S, Saxena G, Prasad A, Ramaswamy R. Dynamical effects of breaking rotational symmetry in counter-rotating Stuart-Landau oscillators. Phys Rev E 2018; 98:022212. [PMID: 30253578 DOI: 10.1103/physreve.98.022212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 11/07/2022]
Abstract
Stuart-Landau oscillators can be coupled so as to either preserve or destroy the rotational symmetry that the uncoupled system possesses. We examine some of the simplest cases of such couplings for a system of two nonidentical oscillators. When the coupling breaks the rotational invariance, there is a qualitative difference between oscillators wherein the phase velocity has the same sign (termed co-rotation) or opposite signs (termed counter-rotation). In the regime of oscillation death the relative sense of the phase rotations plays a major role. In particular, when rotational invariance is broken, counter-rotation or phase velocities of opposite signs appear to destabilize existing fixed points, thereby preserving and possibly extending the range of oscillatory behavior. The dynamical "frustration" induced by counter-rotations can thus suppress oscillation quenching when coupling breaks the symmetry.
Collapse
Affiliation(s)
- Nirmal Punetha
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany
| | - Vaibhav Varshney
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Samir Sahoo
- School of Physical Sciences, Jawaharlal Nehru University, Delhi 110067, India
| | - Garima Saxena
- Department of Physics, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Awadhesh Prasad
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Ram Ramaswamy
- School of Physical Sciences, Jawaharlal Nehru University, Delhi 110067, India
| |
Collapse
|
11
|
Majhi S, Bera BK, Ghosh D, Perc M. Chimera states in neuronal networks: A review. Phys Life Rev 2018; 28:100-121. [PMID: 30236492 DOI: 10.1016/j.plrev.2018.09.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
Neuronal networks, similar to many other complex systems, self-organize into fascinating emergent states that are not only visually compelling, but also vital for the proper functioning of the brain. Synchronous spatiotemporal patterns, for example, play an important role in neuronal communication and plasticity, and in various cognitive processes. Recent research has shown that the coexistence of coherent and incoherent states, known as chimera states or simply chimeras, is particularly important and characteristic for neuronal systems. Chimeras have also been linked to the Parkinson's disease, epileptic seizures, and even to schizophrenia. The emergence of this unique collective behavior is due to diverse factors that characterize neuronal dynamics and the functioning of the brain in general, including neural bumps and unihemispheric slow-wave sleep in some aquatic mammals. Since their discovery, chimera states have attracted ample attention of researchers that work at the interface of physics and life sciences. We here review contemporary research dedicated to chimeras in neuronal networks, focusing on the relevance of different synaptic connections, and on the effects of different network structures and coupling setups. We also cover the emergence of different types of chimera states, we highlight their relevance in other related physical and biological systems, and we outline promising research directions for the future, including possibilities for experimental verification.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Bidesh K Bera
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India.
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
12
|
Majhi S, Ghosh D. Alternating chimeras in networks of ephaptically coupled bursting neurons. CHAOS (WOODBURY, N.Y.) 2018; 28:083113. [PMID: 30180636 DOI: 10.1063/1.5022612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The distinctive phenomenon of the chimera state has been explored in neuronal systems under a variety of different network topologies during the last decade. Nevertheless, in all the works, the neurons are presumed to interact with each other directly with the help of synapses only. But, the influence of ephaptic coupling, particularly magnetic flux across the membrane, is mostly unexplored and should essentially be dealt with during the emergence of collective electrical activities and propagation of signals among the neurons in a network. Through this article, we report the development of an emerging dynamical state, namely, the alternating chimera, in a network of identical neuronal systems induced by an external electromagnetic field. Owing to this interaction scenario, the nonlinear neuronal oscillators are coupled indirectly via electromagnetic induction with magnetic flux, through which neurons communicate in spite of the absence of physical connections among them. The evolution of each neuron, here, is described by the three-dimensional Hindmarsh-Rose dynamics. We demonstrate that the presence of such non-locally and globally interacting external environments induces a stationary alternating chimera pattern in the ensemble of neurons, whereas in the local coupling limit, the network exhibits a transient chimera state whenever the local dynamics of the neurons is of the chaotic square-wave bursting type. For periodic square-wave bursting of the neurons, a similar qualitative phenomenon has been witnessed with the exception of the disappearance of cluster states for non-local and global interactions. Besides these observations, we advance our work while providing confirmation of the findings for neuronal ensembles exhibiting plateau bursting dynamics and also put forward the fact that the plateau pattern actually favors the alternating chimera more than others. These results may deliver better interpretations for different aspects of synchronization appearing in a network of neurons through field coupling that also relaxes the prerequisite of synaptic connectivity for realizing the chimera state in neuronal networks.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
13
|
Majhi S, Muruganandam P, Ferreira FF, Ghosh D, Dana SK. Asymmetry in initial cluster size favors symmetry in a network of oscillators. CHAOS (WOODBURY, N.Y.) 2018; 28:081101. [PMID: 30180614 DOI: 10.1063/1.5043588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Counterintuitive to the common notion of symmetry breaking, asymmetry favors synchrony in a network of oscillators. Our observations on an ensemble of identical Stuart-Landau systems under a symmetry breaking coupling support our conjecture. As usual, for a complete deterministic and the symmetric choice of initial clusters, a variety of asymptotic states, namely, multicluster oscillation death (1-OD, 3-OD, and m -OD), chimera states, and traveling waves emerge. Alternatively, multiple chimera death (1-CD, 3-CD, and m -CD) and completely synchronous states emerge in the network whenever some randomness is added to the symmetric initial states. However, in both the cases, an increasing asymmetry in the initial cluster size restores symmetry in the network, leading to the most favorable complete synchronization state for a broad range of coupling parameters. We are able to reduce the network model using the mean-field approximation that reproduces the dynamical features of the original network.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - P Muruganandam
- Department of Physics, Barathidasan University, Tiruchirapalli 620024, India
| | - F F Ferreira
- Center for Interdisciplinary Research in Complex Systems, University of São Paulo, São Paulo, São Paulo 03828-000, Brazil
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Syamal K Dana
- Department of Mathematics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
14
|
Sathiyadevi K, Chandrasekar VK, Senthilkumar DV, Lakshmanan M. Distinct collective states due to trade-off between attractive and repulsive couplings. Phys Rev E 2018; 97:032207. [PMID: 29776099 DOI: 10.1103/physreve.97.032207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 06/08/2023]
Abstract
We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.
Collapse
Affiliation(s)
- K Sathiyadevi
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur-613 401, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur-613 401, Tamil Nadu, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram-695016, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| |
Collapse
|
15
|
Premalatha K, Chandrasekar VK, Senthilvelan M, Lakshmanan M. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators. CHAOS (WOODBURY, N.Y.) 2018; 28:033110. [PMID: 29604660 DOI: 10.1063/1.5006454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.
Collapse
Affiliation(s)
- K Premalatha
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - M Senthilvelan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
16
|
Majhi S, Perc M, Ghosh D. Chimera states in a multilayer network of coupled and uncoupled neurons. CHAOS (WOODBURY, N.Y.) 2017; 27:073109. [PMID: 28764400 DOI: 10.1063/1.4993836] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We study the emergence of chimera states in a multilayer neuronal network, where one layer is composed of coupled and the other layer of uncoupled neurons. Through the multilayer structure, the layer with coupled neurons acts as the medium by means of which neurons in the uncoupled layer share information in spite of the absence of physical connections among them. Neurons in the coupled layer are connected with electrical synapses, while across the two layers, neurons are connected through chemical synapses. In both layers, the dynamics of each neuron is described by the Hindmarsh-Rose square wave bursting dynamics. We show that the presence of two different types of connecting synapses within and between the two layers, together with the multilayer network structure, plays a key role in the emergence of between-layer synchronous chimera states and patterns of synchronous clusters. In particular, we find that these chimera states can emerge in the coupled layer regardless of the range of electrical synapses. Even in all-to-all and nearest-neighbor coupling within the coupled layer, we observe qualitatively identical between-layer chimera states. Moreover, we show that the role of information transmission delay between the two layers must not be neglected, and we obtain precise parameter bounds at which chimera states can be observed. The expansion of the chimera region and annihilation of cluster and fully coherent states in the parameter plane for increasing values of inter-layer chemical synaptic time delay are illustrated using effective range measurements. These results are discussed in the light of neuronal evolution, where the coexistence of coherent and incoherent dynamics during the developmental stage is particularly likely.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
17
|
Sathiyadevi K, Karthiga S, Chandrasekar VK, Senthilkumar DV, Lakshmanan M. Spontaneous symmetry breaking due to the trade-off between attractive and repulsive couplings. Phys Rev E 2017; 95:042301. [PMID: 28505842 DOI: 10.1103/physreve.95.042301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/07/2023]
Abstract
Spontaneous symmetry breaking is an important phenomenon observed in various fields including physics and biology. In this connection, we here show that the trade-off between attractive and repulsive couplings can induce spontaneous symmetry breaking in a homogeneous system of coupled oscillators. With a simple model of a system of two coupled Stuart-Landau oscillators, we demonstrate how the tendency of attractive coupling in inducing in-phase synchronized (IPS) oscillations and the tendency of repulsive coupling in inducing out-of-phase synchronized oscillations compete with each other and give rise to symmetry breaking oscillatory states and interesting multistabilities. Further, we provide explicit expressions for synchronized and antisynchronized oscillatory states as well as the so called oscillation death (OD) state and study their stability. If the Hopf bifurcation parameter (λ) is greater than the natural frequency (ω) of the system, the attractive coupling favors the emergence of an antisymmetric OD state via a Hopf bifurcation whereas the repulsive coupling favors the emergence of a similar state through a saddle-node bifurcation. We show that an increase in the repulsive coupling not only destabilizes the IPS state but also facilitates the reentrance of the IPS state.
Collapse
Affiliation(s)
- K Sathiyadevi
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - S Karthiga
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695 016, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
18
|
Premalatha K, Chandrasekar VK, Senthilvelan M, Lakshmanan M. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators. Phys Rev E 2017; 95:022208. [PMID: 28297891 DOI: 10.1103/physreve.95.022208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 06/06/2023]
Abstract
We show the existence of chimeralike states in two distinct groups of identical populations of globally coupled Stuart-Landau oscillators. The existence of chimeralike states occurs only for a small range of frequency difference between the two populations, and these states disappear for an increase of mismatch between the frequencies. Here the chimeralike states are characterized by the synchronized oscillations in one population and desynchronized oscillations in another population. We also find that such states observed in two distinct groups of identical populations of nonlocally coupled oscillators are different from the above case in which coexisting domains of synchronized and desynchronized oscillations are observed in one population and the second population exhibits synchronized oscillations for spatially prepared initial conditions. Perturbation from such spatially prepared initial condition leads to the existence of imperfectly synchronized states. An imperfectly synchronized state represents the existence of solitary oscillators which escape from the synchronized group in population I and synchronized oscillations in population II. Also the existence of chimera state is independent of the increase of frequency mismatch between the populations. We also find the coexistence of different dynamical states with respect to different initial conditions, which causes multistability in the globally coupled system. In the case of nonlocal coupling, the system does not show multistability except in the cluster state region.
Collapse
Affiliation(s)
- K Premalatha
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamilnadu, India
| | - M Senthilvelan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
19
|
Majhi S, Perc M, Ghosh D. Chimera states in uncoupled neurons induced by a multilayer structure. Sci Rep 2016; 6:39033. [PMID: 27958355 PMCID: PMC5153648 DOI: 10.1038/srep39033] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 01/23/2023] Open
Abstract
Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108, India
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108, India
| |
Collapse
|
20
|
Chandrasekar VK, Gopal R, Senthilkumar DV, Lakshmanan M. Phase-flip chimera induced by environmental nonlocal coupling. Phys Rev E 2016; 94:012208. [PMID: 27575124 DOI: 10.1103/physreve.94.012208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 06/06/2023]
Abstract
We report the emergence of a collective dynamical state, namely, the phase-flip chimera, from an ensemble of identical nonlinear oscillators that are coupled indirectly via the dynamical variables from a common environment, which in turn are nonlocally coupled. The phase-flip chimera is characterized by the coexistence of two adjacent out-of-phase synchronized coherent domains interspersed by an incoherent domain, in which the nearby oscillators are in out-of-phase synchronized states. Attractors of the coherent domains are either from the same or from different basins of attractions, depending on whether they are periodic or chaotic. The conventional chimera precedes the phase-flip chimera in general. Further, the phase-flip chimera emerges after the completely synchronized evolution of the ensemble, in contrast to conventional chimeras, which emerge as an intermediate state between completely incoherent and coherent states. We have also characterized the observed dynamical transitions using the strength of incoherence, probability distribution of the correlation coefficient, and framework of the master stability function.
Collapse
Affiliation(s)
- V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA University, Thanjavur 613 401, India
| | - R Gopal
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024, India
- Department of Physics, Nehru Memorial College, Puthanampatti, Tiruchirapalli 621 007, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695 016, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024, India
| |
Collapse
|
21
|
Premalatha K, Chandrasekar VK, Senthilvelan M, Lakshmanan M. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. Phys Rev E 2016; 94:012311. [PMID: 27575152 DOI: 10.1103/physreve.94.012311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 06/06/2023]
Abstract
We investigate the emergence of different kinds of imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. We find that the complete synchronization in population I and existence of solitary oscillators which escape from the synchronized group in population II lead to imperfectly synchronized states for sufficiently small values of nonisochronicity parameter. Interestingly, upon increasing the strength of this parameter further there occurs an onset of mixed imperfectly synchronized states where the solitary oscillators occur from both the populations. Synchronized oscillators from both the populations are locked to a common average frequency. In both cases of imperfectly synchronized states, synchronized oscillators exhibit periodic motion while the solitary oscillators are quasiperiodic in nature. In this region, for spatially prepared initial conditions, we can observe the mixed chimera states where the coexistence of synchronized and desynchronized oscillations occur from both the populations. On the other hand, imperfectly synchronized states are not always stable, and they can drift aperiodically due to instability caused by an increase of nonisochronicity parameter. We observe that these states are robust to the introduction of frequency mismatch between the two populations.
Collapse
Affiliation(s)
- K Premalatha
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA University, Thanjavur - 613 401, Tamilnadu, India
| | - M Senthilvelan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| |
Collapse
|
22
|
Premalatha K, Chandrasekar VK, Senthilvelan M, Lakshmanan M. Different kinds of chimera death states in nonlocally coupled oscillators. Phys Rev E 2016; 93:052213. [PMID: 27300886 DOI: 10.1103/physreve.93.052213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 06/06/2023]
Abstract
We investigate the significance of nonisochronicity parameter in a network of nonlocally coupled Stuart-Landau oscillators with symmetry breaking form. We observe that the presence of nonisochronicity parameter leads to structural changes in the chimera death region while varying the strength of the interaction. This gives rise to the existence of different types of chimera death states such as multichimera death state, type I periodic chimera death (PCD) state, and type II periodic chimera death state. We also find that the number of periodic domains in both types of PCD states decreases exponentially with an increase of coupling range and obeys a power law under nonlocal coupling. Additionally, we also analyze the structural changes of chimera death states by reducing the system of dynamical equations to a phase model through the phase reduction. We also briefly study the role of nonisochronicity parameter on chimera states, where the existence of a multichimera state with respect to the coupling range is pointed out. Moreover, we also analyze the robustness of the chimera death state to perturbations in the natural frequencies of the oscillators.
Collapse
Affiliation(s)
- K Premalatha
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA University, Thanjavur-613 401, Tamilnadu, India
| | - M Senthilvelan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India
| |
Collapse
|
23
|
Astakhov S, Gulai A, Fujiwara N, Kurths J. The role of asymmetrical and repulsive coupling in the dynamics of two coupled van der Pol oscillators. CHAOS (WOODBURY, N.Y.) 2016; 26:023102. [PMID: 26931583 DOI: 10.1063/1.4940967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
A system of two asymmetrically coupled van der Pol oscillators has been studied. We show that the introduction of a small asymmetry in coupling leads to the appearance of a "wideband synchronization channel" in the bifurcational structure of the parameter space. An increase of asymmetry and transition to repulsive interaction leads to the formation of multistability. As the result, the tip of the Arnold's tongue widens due to the formation of folds defined by saddle-node bifurcation curves for the limit cycles on the torus.
Collapse
Affiliation(s)
- Sergey Astakhov
- Information Security of Automated Systems Department, Yuri Gagarin State Technical University of Saratov, Politekhnitcheskaya st. 77, Saratov 410054, Russia
| | - Artem Gulai
- Radioelectronics and Telecommunications Department, Yuri Gagarin State Technical University of Saratov, Politekhnitcheskaya st. 77, Saratov 410054, Russia
| | - Naoya Fujiwara
- Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba, Japan
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany
| |
Collapse
|
24
|
Abstract
We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.
Collapse
Affiliation(s)
- Bidesh K Bera
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli-620024, India
| |
Collapse
|
25
|
Loos SAM, Claussen JC, Schöll E, Zakharova A. Chimera patterns under the impact of noise. Phys Rev E 2016; 93:012209. [PMID: 26871075 DOI: 10.1103/physreve.93.012209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 06/05/2023]
Abstract
We investigate two types of chimera states, patterns consisting of coexisting spatially separated domains with coherent and incoherent dynamics, in ring networks of Stuart-Landau oscillators with symmetry-breaking coupling, under the influence of noise. Amplitude chimeras are characterized by temporally periodic dynamics throughout the whole network, but spatially incoherent behavior with respect to the amplitudes in a part of the system; they are long-living transients. Chimera death states generalize chimeras to stationary inhomogeneous patterns (oscillation death), which combine spatially coherent and incoherent domains. We analyze the impact of random perturbations, addressing the question of robustness of chimera states in the presence of white noise. We further consider the effect of symmetries applied to random initial conditions.
Collapse
Affiliation(s)
- Sarah A M Loos
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Jens Christian Claussen
- Computational Systems Biology Lab, Campus Ring 1, Jacobs University Bremen, D-28759 Bremen, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Anna Zakharova
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
26
|
Ujjwal SR, Punetha N, Ramaswamy R. Phase oscillators in modular networks: The effect of nonlocal coupling. Phys Rev E 2016; 93:012207. [PMID: 26871073 DOI: 10.1103/physreve.93.012207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 06/05/2023]
Abstract
We study the dynamics of nonlocally coupled phase oscillators in a modular network. The interactions include a phase lag, α. Depending on the various parameters the system exhibits a number of different dynamical states. In addition to global synchrony there can also be modular synchrony when each module can synchronize separately to a different frequency. There can also be multicluster frequency chimeras, namely coherent domains consisting of modules that are separately synchronized to different frequencies, coexisting with modules within which the dynamics is desynchronized. We apply the Ott-Antonsen ansatz in order to reduce the effective dimensionality and thereby carry out a detailed analysis of the different dynamical states.
Collapse
Affiliation(s)
- Sangeeta Rani Ujjwal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Nirmal Punetha
- Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
27
|
Schneider I, Kapeller M, Loos S, Zakharova A, Fiedler B, Schöll E. Stable and transient multicluster oscillation death in nonlocally coupled networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052915. [PMID: 26651770 DOI: 10.1103/physreve.92.052915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Indexed: 05/03/2023]
Abstract
In a network of nonlocally coupled Stuart-Landau oscillators with symmetry-breaking coupling, we study numerically, and explain analytically, a family of inhomogeneous steady states (oscillation death). They exhibit multicluster patterns, depending on the cluster distribution prescribed by the initial conditions. Besides stable oscillation death, we also find a regime of long transients asymptotically approaching synchronized oscillations. To explain these phenomena analytically in dependence on the coupling range and the coupling strength, we first use a mean-field approximation, which works well for large coupling ranges but fails for coupling ranges, which are small compared to the cluster size. Going beyond standard mean-field theory, we predict the boundaries of the different stability regimes as well as the transient times analytically in excellent agreement with numerical results.
Collapse
Affiliation(s)
- Isabelle Schneider
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany
| | - Marie Kapeller
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Sarah Loos
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Bernold Fiedler
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|