1
|
Tapia F, Hong CW, Aussillous P, Guazzelli É. Rheology of Suspensions of Non-Brownian Soft Spheres across the Jamming and Viscous-to-Inertial Transitions. PHYSICAL REVIEW LETTERS 2024; 133:088201. [PMID: 39241733 DOI: 10.1103/physrevlett.133.088201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 09/09/2024]
Abstract
The rheology of suspensions of non-Brownian soft spheres is studied across jamming but also across the viscous and inertial regimes using a custom pressure- and volume-imposed rheometer. The study shows that the granular rheology found for suspensions of hard spheres can be extended to a soft granular rheology (SGranR) by renormalizing the critical volume fraction and friction coefficient to pressure-dependent values and using the addition of the viscous and inertial stress scales. This SGranR encompasses rheological behaviors on both sides of the jamming transition, resulting in an approximate collapse of the rheological data into two branches when scaled with the distance to jamming, as observed for soft colloids. This research suggests that suspensions of soft particles across flow regimes can be described by a unified SGranR framework around the jamming transition.
Collapse
|
2
|
Chen W, Sixdenier L, McMullen A, Grier DG, Brujic J. Refractive-index and density-matched emulsions with programmable DNA interactions. SOFT MATTER 2024; 20:4175-4183. [PMID: 38506651 DOI: 10.1039/d4sm00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Emulsion droplets on the colloidal length scale are a model system of frictionless compliant spheres. Direct imaging studies of the microscopic structure and dynamics of emulsions offer valuable insights into fundamental processes, such as gelation, jamming, and self-assembly. A microscope, however, can only resolve the individual droplets in a densely packed emulsion if the droplets are closely index-matched to their fluid medium. Mitigating perturbations due to gravity additionally requires the droplets to be density-matched to the medium. Creating droplets that are simultaneously index-matched and density-matched has been a long-standing challenge for the soft-matter community. The present study introduces a method for synthesizing monodisperse micrometer-sized siloxane droplets whose density and refractive index can be precisely and independently tuned by adjusting the volume fraction of three silane precursors. A systematic optimization protocol yields fluorescently labeled ternary droplets whose densities and refractive indexes match, to the fourth decimal place, those of aqueous solutions of glycerol or dimethylsiloxane. Because all of the materials in this system are biocompatible, we functionalize the droplets with DNA strands to endow them with programmed inter-droplet interactions. Confocal microscopy then reveals both the three-dimensional structure and the network of droplet-droplet contacts in a class of self-assembled droplet gels, free from gravitational effects. This experimental toolbox creates opportunities for studying the microscopic mechanisms that govern viscoelastic properties and self-assembly in soft materials.
Collapse
Affiliation(s)
- Wenjun Chen
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| | - Lucas Sixdenier
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| | - Angus McMullen
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| | - David G Grier
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| | - Jasna Brujic
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| |
Collapse
|
3
|
Shivers JL, Sharma A, MacKintosh FC. Strain-Controlled Critical Slowing Down in the Rheology of Disordered Networks. PHYSICAL REVIEW LETTERS 2023; 131:178201. [PMID: 37955486 DOI: 10.1103/physrevlett.131.178201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023]
Abstract
Networks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid (or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computationally and demonstrate its rheological consequences in simulations of strained filament networks and dense suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer networks near the strain stiffening transition.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Abhinav Sharma
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
4
|
Clemmer JT, Robbins MO. Universal behavior in fragmenting brittle, isotropic solids across material properties. Phys Rev E 2023; 108:034902. [PMID: 37849166 DOI: 10.1103/physreve.108.034902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
A bonded particle model is used to explore how variations in the material properties of brittle, isotropic solids affect critical behavior in fragmentation. To control material properties, a model is proposed which includes breakable two- and three-body particle interactions to calibrate elastic moduli and mode I and mode II fracture toughnesses. In the quasistatic limit, fragmentation leads to a power-law distribution of grain sizes which is truncated at a maximum grain mass that grows as a nontrivial power of system size. In the high-rate limit, truncation occurs at a mass that decreases as a power of increasing rate. A scaling description is used to characterize this behavior by collapsing the mean-square grain mass across rates and system sizes. Consistent scaling persists across all material properties studied, although there are differences in the evolution of grain size distributions with strain as the initial number of grains at fracture and their subsequent rate of production depend on Poisson's ratio. This evolving granular structure is found to induce a unique rheology where the ratio of the shear stress to pressure, an internal friction coefficient, decays approximately as the logarithm of increasing strain rate. The stress ratio also decreases at all rates with increasing strain as fragmentation progresses and depends on elastic properties of the solid.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Mark O Robbins
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Olsson P. Slow and fast particles in shear-driven jamming: Critical behavior. Phys Rev E 2023; 108:024904. [PMID: 37723813 DOI: 10.1103/physreve.108.024904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
We do extensive simulations of a simple model of shear-driven jamming in two dimensions to determine and analyze the velocity distribution at different densities ϕ around the jamming density ϕ_{J} and at different low shear strain rates, γ[over ̇]. We then find that the velocity distribution is made up of two parts which are related to two different physical processes which we call the slow process and the fast process as they are dominated by the slower and the faster particles, respectively. Earlier scaling analyses have shown that the shear viscosity η, which diverges as the jamming density is approached from below, consists of two different terms, and we present strong evidence that these terms are related to the two different processes: the leading divergence is due to the fast process, whereas the correction-to-scaling term is due to the slow process. The analysis of the slow process is possible thanks to the observation that the velocity distribution for different γ[over ̇] and ϕ at and around the shear-driven jamming transition has a peak at low velocities and that the distribution has a constant shape up to and slightly above this peak. We then find that it is possible to express the contribution to the shear viscosity due to the slow process in terms of height and position of the peak in the velocity distribution and find that this contribution matches the correction-to-scaling term, determined through a standard critical scaling analysis. A further observation is that the collective particle motion is dominated by the slow process. In contrast to the usual picture in critical phenomena with a direct link between the diverging correlation length and a diverging order parameter, we find that correlations and shear viscosity decouple since they are controlled by different sets of particles and that shear-driven jamming is thus an unusual kind of critical phenomenon.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
6
|
Peshkov A, Teitel S. Comparison of compression versus shearing near jamming, for a simple model of athermal frictionless disks in suspension. Phys Rev E 2023; 107:014901. [PMID: 36797880 DOI: 10.1103/physreve.107.014901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Using a simplified model for a non-Brownian suspension, we numerically study the response of athermal, overdamped, frictionless disks in two dimensions to isotropic and uniaxial compression, as well as to pure and simple shearing, all at finite constant strain rates ε[over ̇]. We show that isotropic and uniaxial compression result in the same jamming packing fraction ϕ_{J}, while pure-shear- and simple-shear-induced jamming occurs at a slightly higher ϕ_{J}^{*}, consistent with that found previously for simple shearing. A critical scaling analysis of pure shearing gives critical exponents consistent with those previously found for both isotropic compression and simple shearing. Using orientational order parameters for contact bond directions, we compare the anisotropy of the force and contact networks at both lowest nematic order, as well as higher 2n-fold order.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics, California State University Fullerton, Fullerton, California 92831, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
7
|
Tapia F, Ichihara M, Pouliquen O, Guazzelli É. Viscous to Inertial Transition in Dense Granular Suspension. PHYSICAL REVIEW LETTERS 2022; 129:078001. [PMID: 36018678 DOI: 10.1103/physrevlett.129.078001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Granular suspensions present a transition from a Newtonian rheology in the Stokes limit to a Bagnoldian rheology when inertia is increased. A custom rheometer that can be run in a pressure- or a volume-imposed mode is used to examine this transition in the dense regime close to jamming. By varying systematically the interstitial fluid, shear rate, and packing fraction in volume-imposed measurements, we show that the transition takes place at a Stokes number of 10 independent of the packing fraction. Using pressure-imposed rheometry, we investigate whether the inertial and viscous regimes can be unified as a function of a single dimensionless number based on stress additivity.
Collapse
Affiliation(s)
- Franco Tapia
- Earthquake Research Institute, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 183-8538, Tokyo, Japan
- Aix-Marseille Université, CNRS, IUSTI, 13453 Marseille, France
| | - Mie Ichihara
- Earthquake Research Institute, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | - Élisabeth Guazzelli
- Aix-Marseille Université, CNRS, IUSTI, 13453 Marseille, France
- Université Paris Cité, CNRS, Matière et Systèmes Complexes (MSC) UMR 7057, F-75013 Paris, France
| |
Collapse
|
8
|
Olsson P. Relaxation times, rheology, and finite size effects for non-Brownian disks in two dimensions. Phys Rev E 2022; 105:034902. [PMID: 35428108 DOI: 10.1103/physreve.105.034902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
We carry out overdamped simulations in a simple model of jamming-a collection of bidisperse soft core frictionless disks in two dimensions-with the aim to explore the finite size dependence of different quantities, both the relaxation time obtained from the relaxation of the energy and the pressure equivalent of the shear viscosity. The motivation for the paper is the observation [Nishikawa et al., J. Stat. Phys. 182, 37 (2021)0022-471510.1007/s10955-021-02710-8] that there are finite size effects in the relaxation time, τ, that give problems in the determination of the critical divergence, and the claim that this is due to a finite size dependence, τ∼lnN, which makes τ an ill-defined quantity. Beside analyses to determine the relaxation time for the whole system we determine particle relaxation times which allow us to determine both histograms of particle relaxation times and the average particle relaxation times-two quantities that are very useful for the analyses. The starting configurations for the relaxation simulations are of two different kinds-completely random or taken from steady shearing simulations-and we find that the difference between these two cases are bigger than previously noted and that the observed problems in the determination of the critical divergence obtained when starting from random configurations are not present when instead starting the relaxations from shearing configurations. We also argue that the the effect that causes the lnN dependence is not as problematic as asserted. When it comes to the finite size dependence of the pressure equivalent of the shear viscosity we find that our data don't give support for the claimed strong finite size dependence, but also that the finite size dependence is at odds with what one would normally expect for a system with a diverging correlation length, and that this calls for an alternative understanding of the phenomenon of shear-driven jamming.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
9
|
Peshkov A, Teitel S. Universality of stress-anisotropic and stress-isotropic jamming of frictionless spheres in three dimensions: Uniaxial versus isotropic compression. Phys Rev E 2022; 105:024902. [PMID: 35291159 DOI: 10.1103/physreve.105.024902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
We numerically study a three-dimensional system of athermal, overdamped, frictionless spheres, using a simplified model for a non-Brownian suspension. We compute the bulk viscosity under both uniaxial and isotropic compression as a means to address the question of whether stress-anisotropic and stress-isotropic jamming are in the same critical universality class. Carrying out a critical scaling analysis of the system pressure p, shear stress σ, and macroscopic friction μ=σ/p, as functions of particle packing fraction ϕ and compression rate ε[over ̇], we find good agreement for all critical parameters comparing the isotropic and anisotropic cases. In particular, we determine that the bulk viscosity diverges as p/ε[over ̇]∼(ϕ_{J}-ϕ)^{-β}, with β=3.36±0.09, as jamming is approached from below. We further demonstrate that the average contact number per particle Z can also be written in a scaling form as a function of ϕ and ε[over ̇]. Once again, we find good agreement between the uniaxial and isotropic cases. We compare our results to prior simulations and theoretical predictions.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
10
|
Clemmer JT, Srivastava I, Grest GS, Lechman JB. Shear Is Not Always Simple: Rate-Dependent Effects of Flow Type on Granular Rheology. PHYSICAL REVIEW LETTERS 2021; 127:268003. [PMID: 35029501 DOI: 10.1103/physrevlett.127.268003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Despite there being an infinite variety of types of flow, most rheological studies focus on a single type such as simple shear. Using discrete element simulations, we explore bulk granular systems in a wide range of flow types at large strains and characterize invariants of the stress tensor for different inertial numbers and interparticle friction coefficients. We identify a strong dependence on the type of flow, which grows with increasing inertial number or friction. Standard models of yielding, repurposed to describe the dependence of the stress on flow type in steady-state flow and at finite rates, are compared with data.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ishan Srivastava
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jeremy B Lechman
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
11
|
Coquand O, Sperl M. Rheology of granular liquids in extensional flows: Beyond the μ(I)-law. Phys Rev E 2021; 104:014604. [PMID: 34412321 DOI: 10.1103/physreve.104.014604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022]
Abstract
The Granular Integration Through Transients (GITT) formalism gives a theoretical description of the rheology of moderately dense granular flows and suspensions. In this work, we extend the GITT equations beyond the case of simple shear flows studied before. Applying this to the particular example of extensional flows, we show that the predicted behavior is somewhat different from that of the more frequently studied simple shear case, as illustrated by the possibility of nonmonotonous evolution of the effective friction coefficient μ with the inertial number I. By the reduction of the GITT equations to simple toy models, we provide a generalization of the μ(I)-law true for any type of flow deformation. Our analysis also includes a study of the Trouton ratio, which is shown to behave quite similarly to that of dense colloidal suspensions.
Collapse
Affiliation(s)
- O Coquand
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Cologne, Germany
| | - M Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Cologne, Germany.,Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| |
Collapse
|
12
|
Perrin H, Wyart M, Metzger B, Forterre Y. Nonlocal Effects Reflect the Jamming Criticality in Frictionless Granular Flows Down Inclines. PHYSICAL REVIEW LETTERS 2021; 126:228002. [PMID: 34152158 DOI: 10.1103/physrevlett.126.228002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The jamming transition is accompanied by a rich phenomenology such as hysteresis or nonlocal effects that is still not well understood. Here, we experimentally investigate a model frictionless granular layer flowing down an inclined plane as a way to disentangle generic collective effects from those arising from frictional interactions. We find that thin frictionless granular layers are devoid of hysteresis of the avalanche angle, yet the layer stability increases as it gets thinner. Steady rheological laws obtained for different layer thicknesses can be collapsed into a unique master curve, supporting the idea that nonlocal effects are the consequence of the usual finite-size effects associated with the presence of a critical point. This collapse indicates that the so-called isostatic length l^{*}, the scale on which pinning a boundary freezes all remaining floppy modes, governs the effect of boundaries on flow and rules out other propositions made in the past.
Collapse
Affiliation(s)
- Hugo Perrin
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matthieu Wyart
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Bloen Metzger
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
| | - Yoël Forterre
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
| |
Collapse
|
13
|
Ikeda H, Hukushima K. Nonaffine displacements below jamming under athermal quasistatic compression. Phys Rev E 2021; 103:032902. [PMID: 33862705 DOI: 10.1103/physreve.103.032902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
Critical properties of frictionless spherical particles below jamming are studied using extensive numerical simulations, paying particular attention to the nonaffine part of the displacements during the athermal quasistatic compression. It is shown that the squared norm of the nonaffine displacement exhibits a power-law divergence toward the jamming transition point. A possible connection between this critical exponent and that of the shear viscosity is discussed. The participation ratio of the displacements vanishes in the thermodynamic limit at the transition point, meaning that the nonaffine displacements are localized marginally with a fractal dimension. Furthermore, the distribution of the displacement is shown to have a power-law tail, the exponent of which is related to the fractal dimension.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan
| | - Koji Hukushima
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
14
|
Peshkov A, Teitel S. Critical scaling of compression-driven jamming of athermal frictionless spheres in suspension. Phys Rev E 2021; 103:L040901. [PMID: 34006006 DOI: 10.1103/physreve.103.l040901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
We study numerically a system of athermal, overdamped, frictionless spheres, as in a non-Brownian suspension, in two and three dimensions. Compressing the system isotropically at a fixed rate ε[over ̇], we investigate the critical behavior at the jamming transition. The finite compression rate introduces a control timescale, which allows one to probe the critical timescale associated with jamming. As was found previously for steady-state shear-driven jamming, we find for compression-driven jamming that pressure obeys a critical scaling relation as a function of packing fraction ϕ and compression rate ε[over ̇], and that the bulk viscosity p/ε[over ̇] diverges upon jamming. A scaling analysis determines the critical exponents associated with the compression-driven jamming transition. Our results suggest that stress-isotropic, compression-driven jamming may be in the same universality class as stress-anisotropic, shear-driven jamming.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
15
|
Abstract
Cohesive granular materials such as wet sand, snow, and powders can flow like a viscous liquid. However, the elementary mechanisms of momentum transport in such athermal particulate fluids are elusive. As a result, existing models for cohesive granular viscosity remain phenomenological and debated. Here we use discrete element simulations of plane shear flows to measure the viscosity of cohesive granular materials, while tuning the intensity of inter-particle adhesion. We establish that two adhesion-related, dimensionless numbers control their viscosity. These numbers compare the force and energy required to break a bond to the characteristic stress and kinetic energy in the flow. This progresses the commonly accepted view that only one dimensionless number could control the effect of adhesion. The resulting scaling law captures strong, non-Newtonian variations in viscosity, unifying several existing viscosity models. We then directly link these variations in viscosity to adhesion-induced modifications in the flow micro-structure and contact network. This analysis reveals the existence of two modes of momentum transport, involving either grain micro-acceleration or balanced contact forces, and shows that adhesion only affects the latter. This advances our understanding of rheological models for granular materials and other soft materials such as emulsions and suspensions, which may also involve inter-particle adhesive forces.
Collapse
Affiliation(s)
- Matthew Macaulay
- School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
16
|
Olsson P, Teitel S. Dynamic length scales in athermal, shear-driven jamming of frictionless disks in two dimensions. Phys Rev E 2020; 102:042906. [PMID: 33212573 DOI: 10.1103/physreve.102.042906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/07/2022]
Abstract
We carry out numerical simulations of athermally sheared, bidisperse, frictionless disks in two dimensions. From an appropriately defined velocity correlation function, we determine that there are two diverging length scales, ξ and ℓ, as the jamming transition is approached. We analyze our results using a critical scaling ansatz for the correlation function and argue that the more divergent length ℓ is a consequence of a dangerous irrelevant scaling variable and that it is ξ, which is the correlation length that determines the divergence of the system viscosity as jamming is approached from below in the liquid phase. We find that ξ∼(ϕ_{J}-ϕ)^{-ν} diverges with the critical exponent ν=1. We provide evidence that ξ measures the length scale of fluctuations in the rotation of the particle velocity field, while ℓ measures the length scale of fluctuations in the divergence of the velocity field.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
17
|
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
18
|
Tong H, Sengupta S, Tanaka H. Emergent solidity of amorphous materials as a consequence of mechanical self-organisation. Nat Commun 2020; 11:4863. [PMID: 32978393 PMCID: PMC7519136 DOI: 10.1038/s41467-020-18663-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
Amorphous solids have peculiar properties distinct from crystals. One of the most fundamental mysteries is the emergence of solidity in such nonequilibrium, disordered state without the protection by long-range translational order. A jammed system at zero temperature, although marginally stable, has solidity stemming from the space-spanning force network, which gives rise to the long-range stress correlation. Here, we show that such nonlocal correlation already appears at the nonequilibrium glass transition upon cooling. This is surprising since we also find that the system suffers from giant anharmonic fluctuations originated from the fractal-like potential energy landscape. We reveal that it is the percolation of the force-bearing network that allows long-range stress transmission even under such circumstance. Thus, the emergent solidity of amorphous materials is a consequence of nontrivial self-organisation of the disordered mechanical architecture. Our findings point to the significance of understanding amorphous solids and nonequilibrium glass transition from a mechanical perspective.
Collapse
Affiliation(s)
- Hua Tong
- School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.,Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shiladitya Sengupta
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
19
|
Coquand O, Sperl M, Kranz WT. Integration through transients approach to the μ(I) rheology. Phys Rev E 2020; 102:032602. [PMID: 33075983 DOI: 10.1103/physreve.102.032602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
This work generalizes the granular integration through transients formalism introduced by Kranz et al. [Phys. Rev. Lett. 121, 148002 (2018)10.1103/PhysRevLett.121.148002] to the determination of the pressure. We focus on the Bagnold regime and provide theoretical support to the empirical μ(I) rheology laws that have been successfully applied in many granular flow problems. In particular, we confirm that the interparticle friction is irrelevant in the regime where the μ(I) laws apply.
Collapse
Affiliation(s)
- O Coquand
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - M Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| | - W T Kranz
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| |
Collapse
|
20
|
Macaulay M, Rognon P. Two mechanisms of momentum transfer in granular flows. Phys Rev E 2020; 101:050901. [PMID: 32575198 DOI: 10.1103/physreve.101.050901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
This Rapid Communication highlights the physical processes at the origin of the constitutive law of dense granular flows. In simulated plane shear flows, we present a micro-mechanical expression for the phenomenological friction law μ(I). The expression highlights two distinct pathways for momentum transport-through either balanced contact forces or grain micro-acceleration. We show that these two rate-dependent processes control and explain the friction law. This understanding may help advance rheological models for granular materials and other soft materials such as emulsions and suspensions.
Collapse
Affiliation(s)
- Matthew Macaulay
- Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Pierre Rognon
- Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
Hwang S, Ikeda H. Force balance controls the relaxation time of the gradient descent algorithm in the satisfiable phase. Phys Rev E 2020; 101:052308. [PMID: 32575263 DOI: 10.1103/physreve.101.052308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
We numerically study the relaxation dynamics of the single-layer perceptron with the spherical constraint. This is the simplest model of neural networks and serves a prototypical mean-field model of both convex and nonconvex optimization problems. The relaxation time of the gradient descent algorithm rapidly increases near the SAT-UNSAT (satisfiable-unsatisfiable) transition point. We numerically confirm that the first nonzero eigenvalue of the Hessian controls the relaxation time. This first eigenvalue vanishes much faster upon approaching the SAT-UNSAT transition point than the prediction of the Marchenko-Pastur law in random matrix theory derived under the assumption that the set of unsatisfied constraints are uncorrelated. This leads to a nontrivial critical exponent of the relaxation time in the SAT phase. Using a simple scaling analysis, we show that the isolation of this first eigenvalue from the bulk of spectrum is attributed to the force balance at the SAT-UNSAT transition point. Finally, we show that the estimated critical exponent of the relaxation time in the nonconvex region agrees very well with that of frictionless spherical particles, which have been studied in the context of the jamming transition of granular materials.
Collapse
Affiliation(s)
- Sungmin Hwang
- LPTMS, Université Paris-Sud 11, UMR 8626 CNRS, Bât. 100, 91405 Orsay Cedex, France
| | - Harukuni Ikeda
- Laboratoire de Physique de l'École Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| |
Collapse
|
22
|
Otsuki M, Hayakawa H. Shear jamming, discontinuous shear thickening, and fragile states in dry granular materials under oscillatory shear. Phys Rev E 2020; 101:032905. [PMID: 32289976 DOI: 10.1103/physreve.101.032905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2020] [Indexed: 11/07/2022]
Abstract
We numerically study the linear response of two-dimensional frictional granular materials under oscillatory shear. The storage modulus G^{'} and the loss modulus G^{''} in the zero strain rate limit depend on the initial strain amplitude of the oscillatory shear before measurement. The shear jammed state (satisfying G^{'}>0) can be observed at an amplitude greater than a critical initial strain amplitude. The fragile state is defined by the emergence of liquid-like and solid-like states depending on the form of the initial shear. In this state, the observed G^{'} after the reduction of the strain amplitude depends on the phase of the external shear strain. The loss modulus G^{''} exhibits a discontinuous jump corresponding to discontinuous shear thickening in the fragile state.
Collapse
Affiliation(s)
- Michio Otsuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Marschall TA, Van Hoesen D, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Particle rotations and orientational ordering. Phys Rev E 2020; 101:032901. [PMID: 32290000 DOI: 10.1103/physreve.101.032901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state simple shear applied at a fixed volume and a fixed finite strain rate γ[over ̇]. Energy dissipation is via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension with Newtonian rheology. Considering a range of packing fractions ϕ and particle asphericities α at small γ[over ̇], we study the angular rotation θ[over ̇]_{i} and the nematic orientational ordering S_{2} of the particles induced by the shear flow, finding a nonmonotonic behavior as the packing ϕ is varied. We interpret this nonmonotonic behavior as a crossover from dilute systems at small ϕ, where single-particle-like behavior occurs, to dense systems at large ϕ, where the geometry of the dense packing dominates and a random Poisson-like process for particle rotations results. We also argue that the finite nematic ordering S_{2} is a consequence of the shearing serving as an ordering field, rather than a result of long-range cooperative behavior among the particles. We arrive at these conclusions by consideration of (i) the distribution of waiting times for a particle to rotate by π, (ii) the behavior of the system under pure, as compared to simple, shearing, (iii) the relaxation of the nematic order parameter S_{2} when perturbed away from the steady state, and (iv) by construction, a numerical mean-field model for the rotational motion of a particle. Our results also help to explain the singular behavior observed when taking the α→0 limit approaching circular disks.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Daniel Van Hoesen
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
24
|
Ikeda A, Kawasaki T, Berthier L, Saitoh K, Hatano T. Universal Relaxation Dynamics of Sphere Packings below Jamming. PHYSICAL REVIEW LETTERS 2020; 124:058001. [PMID: 32083930 DOI: 10.1103/physrevlett.124.058001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic timescale that diverges at jamming. This slow timescale is fully encoded in the structure of the unjammed packing and can be readily measured via the vibrational density of states. We show that the corresponding dynamic critical exponent is the same for randomly generated and sheared packings. Our results show that a wide variety of physical situations, from suspension rheology to algorithmic studies of the jamming transition are controlled by a unique diverging timescale, with a universal critical exponent.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences & WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takahiro Hatano
- Department of Earth and Space Science, Osaka University, 560-0043 Osaka, Japan
| |
Collapse
|
25
|
Experimental synthesis and characterization of rough particles for colloidal and granular rheology. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Karimi K, Amitrano D, Weiss J. From plastic flow to brittle fracture: Role of microscopic friction in amorphous solids. Phys Rev E 2019; 100:012908. [PMID: 31499880 DOI: 10.1103/physreve.100.012908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 11/07/2022]
Abstract
Plasticity in soft amorphous materials typically involves collective deformation patterns that emerge on intense shearing. The microscopic basis of amorphous plasticity has been commonly established through the notion of "Eshelby"-type events, localized abrupt rearrangements that induce flow in the surrounding material via nonlocal elastic-type interactions. This universal mechanism in flowing disordered solids has been proposed despite their diversity in terms of scales, microscopic constituents, or interactions. Using a numerical particle-based study, we argue that the presence of frictional interactions in granular solids alters the dynamics of flow by nucleating micro shear cracks that continually coalesce to build up system-spanning fracturelike formations on approach to failure. The plastic-to-brittle failure transition is controlled by the degree of frictional resistance which is in essence similar to the role of heterogeneities that separate the abrupt and smooth yielding regimes in glassy structures.
Collapse
Affiliation(s)
- Kamran Karimi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - David Amitrano
- Université Grenoble Alpes, CNRS, ISTerre, 38041 Grenoble cedex 9, France
| | - Jérôme Weiss
- Université Grenoble Alpes, CNRS, ISTerre, 38041 Grenoble cedex 9, France
| |
Collapse
|
27
|
Rens R, Lerner E. Rigidity and auxeticity transitions in networks with strong bond-bending interactions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:114. [PMID: 31486002 DOI: 10.1140/epje/i2019-11888-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
A widely studied model for gels or biopolymeric fibrous materials are networks with central force interactions, such as Hookean springs. Less commonly studied are materials whose mechanics are dominated by non-central force interactions such as bond-bending potentials. Inspired by recent experimental advancements in designing colloidal gels with tunable interactions, we study the micro- and macroscopic elasticity of two-dimensional planar graphs with strong bond-bending potentials, in addition to weak central forces. We introduce a theoretical framework that allows us to directly investigate the limit in which the ratio of characteristic central-force to bending stiffnesses vanishes. In this limit we show that a generic isostatic point exists at [Formula: see text], coinciding with the isostatic point of frames with central-force interactions in two dimensions. We further demonstrate the emergence of a stiffening transition when the coordination is increased towards the isostatic point, which shares similarities with the strain-induced stiffening transition observed in biopolymeric fibrous materials, and coincides with an auxeticity transition above which the material's Poisson's ratio approaches -1 when bond-bending interactions dominate.
Collapse
Affiliation(s)
- Robbie Rens
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Marschall TA, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts. Phys Rev E 2019; 100:032906. [PMID: 31639991 DOI: 10.1103/physreve.100.032906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 06/10/2023]
Abstract
We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state shear strain applied at a fixed finite rate. Energy dissipation occurs via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension and resulting in a Newtonian rheology. We study the resulting pressure p and deviatoric shear stress σ of the interacting spherocylinders as a function of packing fraction ϕ, strain rate γ[over ̇], and a parameter α that measures the asphericity of the particles; α is varied to consider the range from nearly circular disks to elongated rods. We consider the direction of anisotropy of the stress tensor, the macroscopic friction μ=σ/p, and the divergence of the transport coefficient η_{p}=p/γ[over ̇] as ϕ is increased to the jamming transition ϕ_{J}. From a phenomenological analysis of Herschel-Bulkley rheology above jamming, we estimate ϕ_{J} as a function of asphericity α and show that the variation of ϕ_{J} with α is the main cause for differences in rheology as α is varied; when plotted as ϕ/ϕ_{J}, rheological curves for different α qualitatively agree. However, a detailed scaling analysis of the divergence of η_{p} for our most elongated particles suggests that the jamming transition of spherocylinders may be in a different universality class than that of circular disks. We also compute the number of contacts per particle Z in the system and show that the value at jamming Z_{J} is a nonmonotonic function of α that is always smaller than the isostatic value. We measure the probability distribution of contacts per unit surface length P(ϑ) at polar angle ϑ with respect to the spherocylinder spine and find that as α→0 this distribution seems to diverge at ϑ=π/2, giving a finite limiting probability for contacts on the vanishingly small flat sides of the spherocylinder. Finally, we consider the variation of the average contact force as a function of location on the particle surface.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
29
|
Pähtz T, Durán O, de Klerk DN, Govender I, Trulsson M. Local Rheology Relation with Variable Yield Stress Ratio across Dry, Wet, Dense, and Dilute Granular Flows. PHYSICAL REVIEW LETTERS 2019; 123:048001. [PMID: 31491250 DOI: 10.1103/physrevlett.123.048001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 06/10/2023]
Abstract
Dry, wet, dense, and dilute granular flows have been previously considered fundamentally different and thus described by distinct, and in many cases incompatible, rheologies. We carry out extensive simulations of granular flows, including wet and dry conditions, various geometries and driving mechanisms (boundary driven, fluid driven, and gravity driven), many of which are not captured by standard rheology models. For all simulated conditions, except for fluid-driven and gravity-driven flows close to the flow threshold, we find that the Mohr-Coulomb friction coefficient μ scales with the square root of the local Péclet number Pe provided that the particle diameter exceeds the particle mean free path. With decreasing Pe and granular temperature gradient M, this general scaling breaks down, leading to a yield condition with a variable yield stress ratio characterized by M.
Collapse
Affiliation(s)
- Thomas Pähtz
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, 310058 Hangzhou, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, 310012 Hangzhou, China
| | - Orencio Durán
- Department of Ocean Engineering, Texas A&M University, College Station, Texas 77843-3136, USA
| | - David N de Klerk
- Centre for Minerals Research, University of Cape Town, Private Bag Rondebosch 7701, South Africa
- Department of Physics, University of Cape Town, Private Bag Rondebosch 7701, South Africa
| | - Indresan Govender
- School of Engineering, University of KwaZulu-Natal, Glenwood 4041, South Africa
| | - Martin Trulsson
- Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
30
|
Vidal V, Oliver C, Lastakowski H, Varas G, Géminard JC. Friction weakening by mechanical vibrations: A velocity-controlled process. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:91. [PMID: 31313027 DOI: 10.1140/epje/i2019-11855-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Frictional weakening by vibrations was first invoked in the 70s to explain unusual fault slips and earthquakes, low viscosity during the collapse of impact craters or the extraordinary mobility of sturzstroms, peculiar rock avalanches which travels large horizontal distances. This mechanism was further invoked to explain the remote triggering of earthquakes or the abnormally large runout of landslides or pyroclastic flows. Recent experimental and theoretical works pointed out that the key parameter which governs frictional weakening in sheared granular media is the characteristic velocity of the vibrations. Here we show that the mobility of the grains is not mandatory and that the vibration velocity governs the weakening of both granular and solid friction. The critical velocity leading to the transition from stick-slip motion to continuous sliding is in both cases of the same order of magnitude, namely a hundred microns per second. It is linked to the roughness of the surfaces in contact.
Collapse
Affiliation(s)
- V Vidal
- Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS, F-69342, Lyon, France
| | - C Oliver
- Instituto de Fisica, Pontificia Universidad Católica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - H Lastakowski
- Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS, F-69342, Lyon, France
| | - G Varas
- Instituto de Fisica, Pontificia Universidad Católica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - J -C Géminard
- Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS, F-69342, Lyon, France.
| |
Collapse
|
31
|
James NM, Hsu CP, Spencer ND, Jaeger HM, Isa L. Tuning Interparticle Hydrogen Bonding in Shear-Jamming Suspensions: Kinetic Effects and Consequences for Tribology and Rheology. J Phys Chem Lett 2019; 10:1663-1668. [PMID: 30896954 DOI: 10.1021/acs.jpclett.9b00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The reversible shear-induced solidification of dense suspensions, known as shear jamming, critically depends on frictional interparticle contacts. Recently, it was shown that shear jamming can be strongly affected by molecular-scale interactions between particles, e.g., by chemically controlling their propensity for hydrogen bonding. However, hydrogen bonding not only enhances interparticle friction but also introduces (reversible) adhesion, whose interplay with friction in shear-jamming systems has so far remained unclear. Here, we present atomic force microscopy studies to assess interparticle adhesion, its relationship to friction, and how these attributes are influenced by urea, a molecule that interferes with hydrogen bonding. We characterize the kinetics of this process with nuclear magnetic resonance, relating it to the time dependence of the macroscopic flow behavior with rheological measurements. We find that time-dependent urea sorption reduces friction and adhesion, causing a reduction in the high-shear viscosity. These results extend our mechanistic understanding of chemical effects on the nature of shear jamming, promising new avenues for fundamental studies and applications alike.
Collapse
Affiliation(s)
- Nicole M James
- James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Chiao-Peng Hsu
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials , ETH Zurich , 8093 Zurich , Switzerland
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zurich , 8093 Zurich , Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zurich , 8093 Zurich , Switzerland
| | - Heinrich M Jaeger
- James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
- Department of Physics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lucio Isa
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
32
|
Olsson P. Dimensionality and Viscosity Exponent in Shear-driven Jamming. PHYSICAL REVIEW LETTERS 2019; 122:108003. [PMID: 30932641 DOI: 10.1103/physrevlett.122.108003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 06/09/2023]
Abstract
Collections of bidisperse frictionless particles at zero temperature in three dimensions are simulated with a shear-driven dynamics with the aim to compare with the behavior in two dimensions. Contrary to the prevailing picture, and in contrast to results from isotropic jamming from compression or quench, we find that the critical exponents in three dimensions are different from those in two dimensions and conclude that shear-driven jamming in two and three dimensions belong to different universality classes.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
33
|
Abstract
Rheology of a dilute cohesive granular gas is theoretically and numerically studied. The flow curve between the shear viscosity and the shear rate is derived from the inelastic Boltzmann equation for particles having square-well potentials in a simple shear flow. It is found that (i) the stable uniformly sheared state only exists above a critical shear rate and (ii) the viscosity in the uniformly sheared flow is almost identical to that for uniformly sheared flow of hard core granular particles. Below the critical shear rate, clusters grow with time, in which the viscosity can be approximated by that for the hard-core fluids if we replace the diameter of the particle by the mean diameter of clusters.
Collapse
Affiliation(s)
- Satoshi Takada
- Earthquake Research Institute, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
34
|
Nagy DB, Claudin P, Börzsönyi T, Somfai E. Rheology of dense granular flows for elongated particles. Phys Rev E 2017; 96:062903. [PMID: 29347339 DOI: 10.1103/physreve.96.062903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 06/07/2023]
Abstract
We study the rheology of dense granular flows for frictionless spherocylinders by means of 3D numerical simulations. As in the case of spherical particles, the effective friction μ is an increasing function of the inertial number I, and we systematically investigate the dependence of μ on the particle aspect ratio Q, as well as that of the normal stress differences, the volume fraction, and the coordination number. We show in particular that the quasistatic friction coefficient is nonmonotonic with Q: from the spherical case Q=1, it first sharply increases, reaches a maximum around Q≃1.05, and then gently decreases until Q=3, passing its initial value at Q≃2. We provide a microscopic interpretation for this unexpected behavior through the analysis of the distribution of dissipative contacts around the particles: as compared to spheres, slightly elongated grains enhance contacts in their central cylindrical band, whereas at larger aspect ratios particles tend to align and dissipate by preferential contacts at their hemispherical caps.
Collapse
Affiliation(s)
- Dániel B Nagy
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Philippe Claudin
- Physique et Mécanique des Milieux Hétérogènes, PMMH UMR 7636, ESPCI-CNRS-Université Paris-Diderot-Université Pierre-et-Marie-Curie, 10 rue Vauquelin, 75005 Paris, France
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Ellák Somfai
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
35
|
Kharel P, Rognon P. Vortices Enhance Diffusion in Dense Granular Flows. PHYSICAL REVIEW LETTERS 2017; 119:178001. [PMID: 29219433 DOI: 10.1103/physrevlett.119.178001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 06/07/2023]
Abstract
This Letter introduces unexpected diffusion properties in dense granular flows and shows that they result from the development of partially jammed clusters of grains, or granular vortices. Transverse diffusion coefficients D and average vortex sizes ℓ are systematically measured in simulated plane shear flows at differing inertial numbers I revealing (i) a strong deviation from the expected scaling D∝d^{2}γ[over ˙] involving the grain size d and shear rate γ[over ˙] and (ii) an increase in average vortex size ℓ at low I, following ℓ∝dI^{-1/2} but limited by the system size. A general scaling D∝ℓdγ[over ˙] is introduced that captures all the measurements and highlights the key role of vortex size. This leads to establishing a scaling for the diffusivity in dense granular flow as D∝d^{2}sqrt[γ[over ˙]/t_{i}] involving the geometric average of shear time 1/γ[over ˙] and inertial time t_{i} as the relevant time scale. Analysis of grain trajectories is further evidence that this diffusion process arises from a vortex-driven random walk.
Collapse
Affiliation(s)
- Prashidha Kharel
- Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pierre Rognon
- Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Abstract
The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, [Formula: see text], is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent [Formula: see text] We build a microscopic theory for the nonmonotonicity of [Formula: see text], which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts [Formula: see text], and the sliding velocity, in terms of [Formula: see text] Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.
Collapse
|
37
|
Otsuki M, Hayakawa H. Discontinuous change of shear modulus for frictional jammed granular materials. Phys Rev E 2017; 95:062902. [PMID: 28709191 DOI: 10.1103/physreve.95.062902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Indexed: 06/07/2023]
Abstract
The shear modulus of jammed frictional granular materials with harmonic repulsive interaction under an oscillatory shear is numerically investigated. It is confirmed that the storage modulus, the real part of the shear modulus, for frictional grains with sufficiently small strain amplitude γ_{0} discontinuously emerges at the jamming transition point. The storage modulus for small γ_{0} differs from that of frictionless grains even in the zero friction limit, whereas they are almost identical with each other for sufficiently large γ_{0}, where the transition becomes continuous. The stress-strain curve exhibits a hysteresis loop even for a small strain, which connects a linear region for sufficiently small strain to another linear region for larger strain. We propose a scaling law to interpolate between the states of small and large γ_{0}.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Physics and Materials Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
38
|
Ness C, Xing Z, Eiser E. Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point. SOFT MATTER 2017; 13:3664-3674. [PMID: 28451674 DOI: 10.1039/c7sm00039a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The viscosity of a dense suspension has contributions from hydrodynamics and particle interactions, both of which depend upon the flow-induced arrangement of particles into fragile structures. Here, we study the response of nearly hard sphere suspensions to oscillatory shear using simulations and experiments in the athermal, non-inertial limit. Three distinct regimes are observed as a function of the strain amplitude γ0. For γ0 < 10-1, initially non-contacting particles remain separated and the suspension behaves similarly to a Newtonian fluid, with the shear stress proportional to the strain rate, and the normal stresses close to zero. For γ0 > 101, the microstructure becomes well-established at the beginning of each shear cycle and the rheology is quasi-Newtonian: the shear stress varies with the rate, but flow-induced structures lead to non-zero normal stresses. At intermediate γ0, particle-particle contacts break and reform across entire oscillatory cycles, and we probe a non-linear regime that reveals the fragility of the material. Guided by these features, we further show that oscillatory shear may serve as a diagnostic tool to isolate specific stress contributions in dense suspensions, and more generally in those materials whose rheology has contributions with both hydrodynamic and non-hydrodynamic origin.
Collapse
Affiliation(s)
- Christopher Ness
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Zhongyang Xing
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Erika Eiser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
39
|
Vågberg D, Olsson P, Teitel S. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks. Phys Rev E 2017; 95:052903. [PMID: 28618647 DOI: 10.1103/physreve.95.052903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 06/07/2023]
Abstract
We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ, inelasticity of collisions as measured by a parameter Q, and applied uniform shear strain rate γ[over ̇]. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ,Q) plane for small γ[over ̇], we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q, we show that, upon increasing γ[over ̇], the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ,γ[over ̇]) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ[over ̇] at fixed ϕ, we find that discontinuous shear thickening can result if γ[over ̇] is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ[over ̇].
Collapse
Affiliation(s)
- Daniel Vågberg
- Laboratoire Charles Coulomb, UMR 5221 CNRS, Université Montpellier, Montpellier, France
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
40
|
|
41
|
Trulsson M, DeGiuli E, Wyart M. Effect of friction on dense suspension flows of hard particles. Phys Rev E 2017; 95:012605. [PMID: 28208434 DOI: 10.1103/physreve.95.012605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 06/06/2023]
Abstract
We use numerical simulations to study the effect of particle friction on suspension flows of non-Brownian hard particles. By systematically varying the microscopic friction coefficient μ_{p} and the viscous number J, we build a phase diagram that identifies three regimes of flow: frictionless, frictional sliding, and rolling. Using energy balance in flow, we predict relations between kinetic observables, confirmed by numerical simulations. For realistic friction coefficients and small viscous numbers (below J∼10^{-3}), we show that the dominating dissipative mechanism is sliding of frictional contacts, and we characterize asymptotic behaviors as jamming is approached. Outside this regime, our observations support the idea that flow belongs to the universality class of frictionless particles. We discuss recent experiments in the context of our phase diagram.
Collapse
Affiliation(s)
- M Trulsson
- Theoretical Chemistry, Department of Chemistry, Lund University, Sweden
| | - E DeGiuli
- Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M Wyart
- Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Abstract
We propose a Widom-like scaling ansatz for the critical jamming transition. Our ansatz for the elastic energy shows that the scaling of the energy, compressive strain, shear strain, system size, pressure, shear stress, bulk modulus, and shear modulus are all related to each other via scaling relations, with only three independent scaling exponents. We extract the values of these exponents from already known numerical or theoretical results, and we numerically verify the resulting predictions of the scaling theory for the energy and residual shear stress. We also derive a scaling relation between pressure and residual shear stress that yields insight into why the shear and bulk moduli scale differently. Our theory shows that the jamming transition exhibits an emergent scale invariance, setting the stage for the potential development of a renormalization group theory for jamming.
Collapse
Affiliation(s)
- Carl P Goodrich
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
| | - Andrea J Liu
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104
| | - James P Sethna
- Department of Physics, Cornell University, Ithaca, NY 14850
| |
Collapse
|
43
|
Düring G, Lerner E, Wyart M. Effect of particle collisions in dense suspension flows. Phys Rev E 2016; 94:022601. [PMID: 27627354 DOI: 10.1103/physreve.94.022601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 06/06/2023]
Abstract
We study nonlocal effects associated with particle collisions in dense suspension flows, in the context of the Affine Solvent Model, known to capture various aspects of the jamming transition. We show that an individual collision changes significantly the velocity field on a characteristic volume Ω_{c}∼1/δz that diverges as jamming is approached, where δz is the deficit in coordination number required to jam the system. Such an event also affects the contact forces between particles on that same volume Ω_{c}, but this change is modest in relative terms, of order f_{coll}∼f[over ¯]^{0.8}, where f[over ¯] is the typical contact force scale. We then show that the requirement that coordination is stationary (such that a collision has a finite probability to open one contact elsewhere in the system) yields the scaling of the viscosity (or equivalently the viscous number) with coordination deficit δz. The same scaling result was derived [E. DeGiuli, G. Düring, E. Lerner, and M. Wyart, Phys. Rev. E 91, 062206 (2015)PLEEE81539-375510.1103/PhysRevE.91.062206] via different arguments making an additional assumption. The present approach gives a mechanistic justification as to why the correct finite size scaling volume behaves as 1/δz and can be used to recover a marginality condition known to characterize the distributions of contact forces and gaps in jammed packings.
Collapse
Affiliation(s)
- Gustavo Düring
- Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
| | - Edan Lerner
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Matthieu Wyart
- Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
DeGiuli E, McElwaine JN, Wyart M. Phase diagram for inertial granular flows. Phys Rev E 2016; 94:012904. [PMID: 27575203 DOI: 10.1103/physreve.94.012904] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 06/06/2023]
Abstract
Flows of hard granular materials depend strongly on the interparticle friction coefficient μ_{p} and on the inertial number I, which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for 10^{-4}≲I≲10^{-1}: frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as μ_{p} increases from zero at constant I. The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both display nonmonotonic behavior with μ_{p}, corresponding to transitions between the three regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I≥10^{-2.5} that the growth of the macroscopic friction μ(I) with I is induced by an increase of collisional dissipation. This implies in that range that μ(I)-μ(0)∼I^{1-2b}, where b≈0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L∼I^{-b} and the density of sliding contacts χ∼I^{b}.
Collapse
Affiliation(s)
- E DeGiuli
- New York University, Center for Soft Matter Research, 4 Washington Place, New York, New York 10003, USA
- Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J N McElwaine
- Department of Earth Sciences, Durham University, Science Labs, Durham, DH1 3LE, United Kingdom
| | - M Wyart
- Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Olsson P. Dissipation and velocity distribution at the shear-driven jamming transition. Phys Rev E 2016; 93:042614. [PMID: 27176359 DOI: 10.1103/physreve.93.042614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 11/06/2022]
Abstract
We investigate energy dissipation and the distribution of particle velocities at the jamming transition for overdamped shear-driven frictionless disks in two dimensions at zero temperature. We find that the dissipation is caused by the fastest particles and that the fraction of particles responsible for the dissipation decreases towards zero as jamming is approached. These particles belong to an algebraic tail of the velocity distribution that approaches ∼v^{-3} as jamming is approached. We further find that different measures of the velocity diverge differently, which means that concepts such as typical velocity may no longer be used, a finding that should have implications for analytical approaches to shear-driven jamming.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
46
|
Vågberg D, Olsson P, Teitel S. Critical scaling of Bagnold rheology at the jamming transition of frictionless two-dimensional disks. Phys Rev E 2016; 93:052902. [PMID: 27300966 DOI: 10.1103/physreve.93.052902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Indexed: 06/06/2023]
Abstract
We carry out constant volume simulations of steady-state shear-driven rheology in a simple model of bidisperse soft-core frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. We discuss in detail the critical scaling ansatz for the shear-driven jamming transition and carry out a detailed scaling analysis of our resulting data for pressure p and shear stress σ. Our analysis determines the critical exponent β that describes the algebraic divergence of the Bagnold transport coefficients lim_{γ[over ̇]→0}p/γ[over ̇]^{2},σ/γ[over ̇]^{2}∼(ϕ_{J}-ϕ)^{-β} as the jamming transition ϕ_{J} is approached from below. For the low strain rates considered in this work, we show that it is still necessary to consider the leading correction-to-scaling term in order to achieve a self-consistent analysis of our data, in which the critical parameters become independent of the size of the window of data used in the analysis. We compare our resulting value β≈5.0±0.4 against previous numerical results and competing theoretical models. Our results confirm that the shear-driven jamming transition in Bagnoldian systems is well described by a critical scaling theory and we relate this scaling theory to the phenomenological constituent laws for dilatancy and friction.
Collapse
Affiliation(s)
- Daniel Vågberg
- Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
47
|
Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc Natl Acad Sci U S A 2015; 112:15326-30. [PMID: 26621744 DOI: 10.1073/pnas.1515477112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic particle-scale numerical simulations are used to show that the shear thickening observed in dense colloidal, or Brownian, suspensions is of a similar nature to that observed in noncolloidal suspensions, i.e., a stress-induced transition from a flow of lubricated near-contacting particles to a flow of a frictionally contacting network of particles. Abrupt (or discontinuous) shear thickening is found to be a geometric rather than hydrodynamic phenomenon; it stems from the strong sensitivity of the jamming volume fraction to the nature of contact forces between suspended particles. The thickening obtained in a colloidal suspension of purely hard frictional spheres is qualitatively similar to experimental observations. However, the agreement cannot be made quantitative with only hydrodynamics, frictional contacts, and Brownian forces. Therefore, the role of a short-range repulsive potential mimicking the stabilization of actual suspensions on the thickening is studied. The effects of Brownian and repulsive forces on the onset stress can be combined in an additive manner. The simulations including Brownian and stabilizing forces show excellent agreement with experimental data for the viscosity η and the second normal stress difference N2.
Collapse
|
48
|
Lin J, Gueudré T, Rosso A, Wyart M. Criticality in the Approach to Failure in Amorphous Solids. PHYSICAL REVIEW LETTERS 2015; 115:168001. [PMID: 26550903 DOI: 10.1103/physrevlett.115.168001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 06/05/2023]
Abstract
Failure of amorphous solids is fundamental to various phenomena, including landslides and earthquakes. Recent experiments indicate that highly plastic regions form elongated structures that are especially apparent near the maximal shear stress Σmax where failure occurs. This observation suggested that Σmax acts as a critical point where the length scale of those structures diverges, possibly causing macroscopic transient shear bands. Here, we argue instead that the entire solid phase (Σ<Σmax) is critical, that plasticity always involves system-spanning events, and that their magnitude diverges at Σmax independently of the presence of shear bands. We relate the statistics and fractal properties of these rearrangements to an exponent θ that captures the stability of the material, which is observed to vary continuously with stress, and we confirm our predictions in elastoplastic models.
Collapse
Affiliation(s)
- Jie Lin
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| | - Thomas Gueudré
- DISAT, Politecnico Corso Duca degli Abruzzi, I-10129 Torino, Italy
| | - Alberto Rosso
- Laboratoire de Physique Théorique et Modèles Statistiques (UMR CNRS 8626), Université de Paris-Sud, Orsay Cedex 91405, France
| | - Matthieu Wyart
- Institute of Theoretical Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Suzuki K, Hayakawa H. Divergence of Viscosity in Jammed Granular Materials: A Theoretical Approach. PHYSICAL REVIEW LETTERS 2015; 115:098001. [PMID: 26371683 DOI: 10.1103/physrevlett.115.098001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 06/05/2023]
Abstract
A theory for jammed granular materials is developed with the aid of a nonequilibrium steady-state distribution function. The approximate nonequilibrium steady-state distribution function is explicitly given in the weak dissipation regime by means of the relaxation time. The theory quantitatively agrees with the results of the molecular dynamics simulation on the critical behavior of the viscosity below the jamming point without introducing any fitting parameter.
Collapse
Affiliation(s)
- Koshiro Suzuki
- Analysis Technology Development Center, Canon Inc., 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
50
|
Olsson P. Relaxation times and rheology in dense athermal suspensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062209. [PMID: 26172707 DOI: 10.1103/physreve.91.062209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 06/04/2023]
Abstract
We study the jamming transition in a model of elastic particles under shear at zero temperature. The key quantity is the relaxation time τ which is obtained by stopping the shearing and letting energy and pressure decay to zero. At many different densities and initial shear rates we do several such relaxations to determine the average τ. We establish that τ diverges with the same exponent as the viscosity and determine another exponent from the relation between τ and the coordination number. Though most of the simulations are done for the model with dissipation due to the motion of particles relative to an affinely shearing substrate, we also examine a model, where the dissipation is instead due to velocity differences of disks in contact, and confirm that the above-mentioned exponent is the same for these two models. We also consider finite size effects on both τ and the coordination number.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|