1
|
Du X, Weeks ER. Rearrangements during slow compression of a jammed two-dimensional emulsion. Phys Rev E 2024; 109:034605. [PMID: 38632734 DOI: 10.1103/physreve.109.034605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
As amorphous materials get jammed, both geometric and dynamic heterogeneity are observed. We investigate the correlation between the local geometric heterogeneity and local rearrangements in a slowly compressed bidisperse quasi-two-dimensional emulsion system. The compression is driven by evaporation of the continuous phase and causes the area packing fraction to increase from 0.88 to 0.99. We quantify the structural heterogeneity of the system using the radical Voronoi tessellation following the method of Rieser et al. [Phys. Rev. Lett. 116, 088001 (2016)]0031-900710.1103/PhysRevLett.116.088001. We define two structural quantities characterizing local structure, the first of which considers nearest neighbors and the second of which includes information from second-nearest neighbors. We find that droplets in heterogeneous local regions are more likely to have local rearrangements. These rearrangements are generally T1 events where two droplets converge toward a void, and two droplets move away from the void to make room for the converging droplets. Thus, the presence of the voids tends to orient the T1 events. The presence of a correlation between the structural quantities and the rearrangement dynamics remains qualitatively unchanged over the entire range of packing fractions observed.
Collapse
Affiliation(s)
- Xin Du
- Department of Physics and Astronomy, Widener University, Chester, Pennsylvania 19013, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Tajima C, Inasawa S. Effects of liquid–liquid interfaces on flow of oil-in-water emulsions in a capillary tube. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Ono-Dit-Biot JC, Soulard P, Barkley S, Weeks ER, Salez T, Raphaël E, Dalnoki-Veress K. Mechanical properties of 2D aggregates of oil droplets as model mono-crystals. SOFT MATTER 2021; 17:1194-1201. [PMID: 33336662 DOI: 10.1039/d0sm01165g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive row-reduction transitions. For small compression forces, the crystal responds elastically until a critical force is reached and the assembly fractures in a single catastrophic global event. Correspondingly there is a peak in the force measurement associated with each row-reduction. The elastic properties of ideal mono-crystal samples are fully captured by a simple analytical model consisting of an assembly of individual capillary springs. The yielding properties of the crystal are captured with a minimal bond breaking model.
Collapse
Affiliation(s)
| | - Pierre Soulard
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Solomon Barkley
- Department of Physics & Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Elie Raphaël
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Kari Dalnoki-Veress
- Department of Physics & Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada. and UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
4
|
Hasegawa K, Inasawa S. Evaporation kinetics of continuous water and dispersed oil droplets. SOFT MATTER 2020; 16:8692-8701. [PMID: 32996538 DOI: 10.1039/d0sm01116a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Drying of volatile oil droplets immersed in a continuous water phase was observed and analysed. Drying sample solutions were sandwiched between two glass plates and the water and oil phases were observed by confocal microscopy. In the initial stage of drying, evaporation of water was dominant and drying of the oil droplets was negligible. However, the rate of water evaporation decreased when the oil droplets were compressed. Comparison of experimental data with a diffusion model of water vapour showed that the decline in drying rates occurred earlier in the experiment than in the theoretical prediction. This implies that compression and narrowing of water paths caused the decline in the rate of water evaporation. After most water had evaporated, evaporation of the oil droplets occurred. The oil droplets did not shrink isotropically and the air-liquid interface invaded into the drying oil droplets. Cross-sectional observation by z-scanning revealed direct exposure of the oil droplets and they were pinned by the residual water phase. The water network between the oil droplets collapsed after the oil droplets had evaporated. The correlation between changes in structures and drying kinetics in both liquid phases was discussed.
Collapse
Affiliation(s)
- Katsuyuki Hasegawa
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, Kanagawa 220-0011, Japan and Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Tokyo, Japan.
| | - Susumu Inasawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Tokyo, Japan. and Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Tokyo, Japan
| |
Collapse
|
5
|
Golovkova I, Montel L, Wandersman E, Bertrand T, Prevost AM, Pontani LL. Depletion attraction impairs the plasticity of emulsions flowing in a constriction. SOFT MATTER 2020; 16:3294-3302. [PMID: 32173724 DOI: 10.1039/c9sm02343g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the elasto-plastic behavior of dense attractive emulsions under a mechanical perturbation. The attraction is introduced through non-specific depletion interactions between the droplets and is controlled by changing the concentration of surfactant micelles in the continuous phase. We find that such attractive forces are not sufficient to induce any measurable modification on the scalings between the local packing fraction and the deformation of the droplets. However, when the emulsions are flowed through 2D microfluidic constrictions, we uncover a measurable effect of attraction on their elasto-plastic response. Indeed, we measure higher levels of deformation inside the constriction for attractive droplets. In addition, we show that these measurements correlate with droplet rearrangements that are spatially delayed in the constriction for higher attraction forces.
Collapse
Affiliation(s)
- Iaroslava Golovkova
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Lorraine Montel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Elie Wandersman
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Alexis Michel Prevost
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Lea-Laetitia Pontani
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| |
Collapse
|
6
|
Vecchiolla D, Biswal SL. Dislocation mechanisms in the plastic deformation of monodisperse wet foams within an expansion-contraction microfluidic geometry. SOFT MATTER 2019; 15:6207-6223. [PMID: 31332408 DOI: 10.1039/c9sm00477g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Densely packed wet foam was subjected to gradual expansion and contraction in a wide (1400-1800 μm) microfluidic channel to study localized plastic deformation events within the monodisperse bubble matrix. Dislocation glide, reflection, nucleation, and dipole transformations from extensional and compressive stresses were observed across a range of fluid flow rates and bubble packing densities. Disparate, cyclic reflections occur in two independent regions of the flowing foam, and the mechanisms of dislocation reflection under tension are expanded. The use of an asymmetric channel created a dichotomy in the model crystalline system between straighter, aligned bubble rows and curved, misaligned rows due to the corresponding streamlines within the channel. The resulting gradient in crystalline alignment had numerous effects on dislocation mobility and plastic deformation. 7/7 dipoles were found to rearrange to a more stable configuration aligned with the foam flow before dissociating. Dislocations comprising 5/5 dipoles (resembling the inverse-Stone-Wales defect in carbon nanostructures) were discovered to pass through one another via intermediate ring structures, which most commonly consisted of three dislocation pairs around a triangular-shaped central bubble.
Collapse
Affiliation(s)
- Daniel Vecchiolla
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
7
|
Ricouvier J, Pierrat R, Carminati R, Tabeling P, Yazhgur P. Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions. PHYSICAL REVIEW LETTERS 2017; 119:208001. [PMID: 29219379 DOI: 10.1103/physrevlett.119.208001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 06/07/2023]
Abstract
We study long range density fluctuations (hyperuniformity) in two-dimensional jammed packings of bidisperse droplets. Taking advantage of microfluidics, we systematically span a large range of size and concentration ratios of the two droplet populations. We identify various defects increasing long range density fluctuations mainly due to organization of local particle environment. By choosing an appropriate bidispersity, we fabricate materials with a high level of hyperuniformity. Interesting transparency properties of these optimized materials are established based on numerical simulations.
Collapse
Affiliation(s)
- Joshua Ricouvier
- ESPCI Paris, PSL Research University, CNRS, IPGG, MMN, 6 rue Jean Calvin, F-75005 Paris, France
| | - Romain Pierrat
- ESPCI Paris, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005 Paris, France
| | - Rémi Carminati
- ESPCI Paris, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005 Paris, France
| | - Patrick Tabeling
- ESPCI Paris, PSL Research University, CNRS, IPGG, MMN, 6 rue Jean Calvin, F-75005 Paris, France
| | - Pavel Yazhgur
- ESPCI Paris, PSL Research University, CNRS, IPGG, MMN, 6 rue Jean Calvin, F-75005 Paris, France
| |
Collapse
|
8
|
Lv X, Chen D, Yang L, Zhu N, Li J, Zhao J, Hu Z, Wang FJ, Zhang LW. Comparative studies on the immunoregulatory effects of three polysaccharides using high content imaging system. Int J Biol Macromol 2016; 86:28-42. [DOI: 10.1016/j.ijbiomac.2016.01.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
|
9
|
Bouzid M, Izzet A, Trulsson M, Clément E, Claudin P, Andreotti B. Non-local rheology in dense granular flows: Revisiting the concept of fluidity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:125. [PMID: 26614496 DOI: 10.1140/epje/i2015-15125-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
The aim of this article is to discuss the concepts of non-local rheology and fluidity, recently introduced to describe dense granular flows. We review and compare various approaches based on different constitutive relations and choices for the fluidity parameter, focusing on the kinetic elasto-plastic model introduced by Bocquet et al. (Phys. Rev. Lett 103, 036001 (2009)) for soft matter, and adapted for granular matter by Kamrin et al. (Phys. Rev. Lett. 108, 178301 (2012)), and the gradient expansion of the local rheology μ(I) that we have proposed (Phys. Rev. Lett. 111, 238301 (2013)). We emphasise that, to discriminate between these approaches, one has to go beyond the predictions derived from linearisation around a uniform stress profile, such as that obtained in a simple shear cell. We argue that future tests can be based on the nature of the chosen fluidity parameter, and the related boundary conditions, as well as the hypothesis made to derive the models and the dynamical mechanisms underlying their dynamics.
Collapse
Affiliation(s)
- Mehdi Bouzid
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI - CNRS - Univ. Paris-Diderot - Univ. P.M. Curie, 10 rue Vauquelin, 75005, Paris, France
| | - Adrien Izzet
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI - CNRS - Univ. Paris-Diderot - Univ. P.M. Curie, 10 rue Vauquelin, 75005, Paris, France
| | - Martin Trulsson
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI - CNRS - Univ. Paris-Diderot - Univ. P.M. Curie, 10 rue Vauquelin, 75005, Paris, France
| | - Eric Clément
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI - CNRS - Univ. Paris-Diderot - Univ. P.M. Curie, 10 rue Vauquelin, 75005, Paris, France
| | - Philippe Claudin
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI - CNRS - Univ. Paris-Diderot - Univ. P.M. Curie, 10 rue Vauquelin, 75005, Paris, France
| | - Bruno Andreotti
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI - CNRS - Univ. Paris-Diderot - Univ. P.M. Curie, 10 rue Vauquelin, 75005, Paris, France.
| |
Collapse
|
10
|
Dollet B, Bocher C. Flow of foam through a convergent channel. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:123. [PMID: 26607260 DOI: 10.1140/epje/i2015-15123-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
We study experimentally the flow of a foam confined as a bubble monolayer between two plates through a convergent channel. We quantify the velocity, the distribution and orientation of plastic events, and the elastic stress, using image analysis. We use two different soap solutions: a sodium dodecyl sulfate (SDS) solution, with a negligible wall friction between the bubbles and the confining plates, and a mixture containing a fatty acid, giving a large wall friction. We show that for SDS solutions, the velocity profile obeys a self-similar form which results from the superposition of plastic events, and the elastic deformation is uniform. For the other solution, the velocity field differs and the elastic deformation increases towards the exit of the channel. We discuss and quantify the role of wall friction on the velocity profile, the elastic deformation, and the rate of plastic events.
Collapse
Affiliation(s)
- Benjamin Dollet
- Institut de Physique de Rennes, UMR 6251 CNRS/Université Rennes 1, Bâtiment 11A, 35042, Rennes Cedex, France.
| | - Claire Bocher
- Institut de Physique de Rennes, UMR 6251 CNRS/Université Rennes 1, Bâtiment 11A, 35042, Rennes Cedex, France
| |
Collapse
|