1
|
Goswami K, Cherstvy AG, Godec A, Metzler R. Anomalous diffusion of active Brownian particles in responsive elastic gels: Nonergodicity, non-Gaussianity, and distributions of trapping times. Phys Rev E 2024; 110:044609. [PMID: 39562954 DOI: 10.1103/physreve.110.044609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
Understanding actual transport mechanisms of self-propelled particles (SPPs) in complex elastic gels-such as in the cell cytoplasm, in in vitro networks of chromatin or of F-actin fibers, or in mucus gels-has far-reaching consequences. Implications beyond biology/biophysics are in engineering and medicine, with a particular focus on microrheology and on targeted drug delivery. Here, we examine via extensive computer simulations the dynamics of SPPs in deformable gellike structures responsive to thermal fluctuations. We treat tracer particles comparable to and larger than the mesh size of the gel. We observe distinct trapping events of active tracers at relatively short times, leading to subdiffusion; it is followed by an escape from meshwork-induced traps due to the flexibility of the network, resulting in superdiffusion. We thus find crossovers between different transport regimes. We also find pronounced nonergodicity in the dynamics of SPPs and non-Gaussianity at intermediate times. The distributions of trapping times of the tracers escaping from "cages" in our quasiperiodic gel often reveal the existence of two distinct timescales in the dynamics. At high activity of the tracers these timescales become comparable. Furthermore, we find that the mean waiting time exhibits a power-law dependence on the activity of SPPs (in terms of their Péclet number). Our results additionally showcase both exponential and nonexponential trapping events at high activities. Extensions of this setup are possible, with the factors such as anisotropy of the particles, different topologies of the gel network, and various interactions between the particles (also of a nonlocal nature) to be considered.
Collapse
|
2
|
Abstract
Transport of intracellular components relies on a variety of active and passive mechanisms, ranging from the diffusive spreading of small molecules over short distances to motor-driven motion across long distances. The cell-scale behavior of these mechanisms is fundamentally dependent on the morphology of the underlying cellular structures. Diffusion-limited reaction times can be qualitatively altered by the presence of occluding barriers or by confinement in complex architectures, such as those of reticulated organelles. Motor-driven transport is modulated by the architecture of cytoskeletal filaments that serve as transport highways. In this review, we discuss the impact of geometry on intracellular transport processes that fulfill a broad range of functional objectives, including delivery, distribution, and sorting of cellular components. By unraveling the interplay between morphology and transport efficiency, we aim to elucidate key structure-function relationships that govern the architecture of transport systems at the cellular scale. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anamika Agrawal
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Zubenelgenubi C Scott
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
3
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
4
|
Hadrioui N, Lemaalem M, Derouiche A, Ridouane H. Physical properties of phospholipids and integral proteins and their biofunctional roles in pulmonary surfactant from molecular dynamics simulation. RSC Adv 2020; 10:8568-8579. [PMID: 35497816 PMCID: PMC9049990 DOI: 10.1039/d0ra00077a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022] Open
Abstract
This work deals with a quantitative investigation of the physical properties of pulmonary surfactant near melting temperature. To this end, we make use of molecular dynamics simulations, using the MARTINI coarse-grained model, for determining the physical properties of the system, such as the potential energy, the specific heat, the microstructure, the diffusion laws, and the elastic properties of the surfactant. The microstructure is studied by computation of the radial-distribution-function upon varying the distance between constituents (lipid molecules or proteins). The diffusion phenomenon is investigated by determination of the mean-squared-displacement and the time dependent velocity-autocorrelation-function for various values of temperature. We show that the dynamics of lipids and proteins exhibit a subdiffusion regime (slow movement) due to the cage effect within pulmonary surfactant. From the obtained mean-squared-displacement, we get the values of the self-diffusion-coefficients and the anomalous exponents at different temperatures close to the melting temperature. For the mathematical description of the cage effect, we make use of the scale relations in terms of the waiting time probability distribution. The last study is concerned with determination of the dependence of the lateral stress upon the strain of pulmonary surfactant, which is found to be linear, and from which we deduce the lateral-elastic-modulus.
Collapse
Affiliation(s)
- Nourddine Hadrioui
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Mohammed Lemaalem
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Abdelali Derouiche
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Hamid Ridouane
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| |
Collapse
|
5
|
Hitching a Ride: Mechanics of Transport Initiation through Linker-Mediated Hitchhiking. Biophys J 2020; 118:1357-1369. [PMID: 32061275 DOI: 10.1016/j.bpj.2020.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
In contrast to the canonical picture of transport by direct attachment to motor proteins, recent evidence shows that a number of intracellular "cargos" navigate the cytoplasm by hitchhiking on motor-driven "carrier" organelles. We describe a quantitative model of intracellular cargo transport via hitchhiking, examining the efficiency of hitchhiking initiation as a function of geometric and mechanical parameters. We focus specifically on the parameter regime relevant to the hitchhiking motion of peroxisome organelles in fungal hyphae. Our work predicts the dependence of transport initiation rates on the distribution of cytoskeletal tracks and carrier organelles, as well as the number, length, and flexibility of the linker proteins that mediate contact between the carrier and the hitchhiking cargo. Furthermore, we demonstrate that attaching organelles to microtubules can result in a substantial enhancement of the hitchhiking initiation rate in tubular geometries such as those found in fungal hyphae. This enhancement is expected to increase the overall transport rate of hitchhiking organelles and lead to greater efficiency in organelle dispersion. Our results leverage a quantitative physical model to highlight the importance of organelle encounter dynamics in noncanonical intracellular transport.
Collapse
|
6
|
Korabel N, Waigh TA, Fedotov S, Allan VJ. Non-Markovian intracellular transport with sub-diffusion and run-length dependent detachment rate. PLoS One 2018; 13:e0207436. [PMID: 30475848 PMCID: PMC6261056 DOI: 10.1371/journal.pone.0207436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
Intracellular transport of organelles is fundamental to cell function and health. The mounting evidence suggests that this transport is in fact anomalous. However, the reasons for the anomaly is still under debate. We examined experimental trajectories of organelles inside a living cell and propose a mathematical model that describes the previously reported transition from sub-diffusive to super-diffusive motion. In order to explain super-diffusive behaviour at long times, we introduce non-Markovian detachment kinetics of the cargo: the rate of detachment is inversely proportional to the time since the last attachment. Recently, we observed the non-Markovian detachment rate experimentally in eukaryotic cells. Here we further discuss different scenarios of how this effective non-Markovian detachment rate could arise. The non-Markovian model is successful in simultaneously describing the time averaged variance (the time averaged mean squared displacement corrected for directed motion), the mean first passage time of trajectories and the multiple peaks observed in the distributions of cargo velocities. We argue that non-Markovian kinetics could be biologically beneficial compared to the Markovian kinetics commonly used for modelling, by increasing the average distance the cargoes travel when a microtubule is blocked by other filaments. In turn, sub-diffusion allows cargoes to reach neighbouring filaments with higher probability, which promotes active motion along the microtubules.
Collapse
Affiliation(s)
- Nickolay Korabel
- School of Mathematics, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - Thomas A. Waigh
- Biological Physics, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- The Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - Sergei Fedotov
- School of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Viki J. Allan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Mogre SS, Koslover EF. Multimodal transport and dispersion of organelles in narrow tubular cells. Phys Rev E 2018; 97:042402. [PMID: 29758750 DOI: 10.1103/physreve.97.042402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 11/07/2022]
Abstract
Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Elena F Koslover
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Kar P, Cherstvy AG, Metzler R. Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation. Phys Chem Chem Phys 2018; 20:7931-7946. [DOI: 10.1039/c7cp06922g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. We here uncover the implications of colocalisation of protein production and DNA binding sites via computer simulations.
Collapse
Affiliation(s)
- Prathitha Kar
- Dept of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bengaluru
- India
- Institute for Physics & Astronomy
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
9
|
Abstract
Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes.
Collapse
|
10
|
Ma YD, Luo KF. Anomalous and Normal Diffusion of Tracers in Crowded Environments: Effect of Size Disparity between Tracer and Crowders. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1609184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time. Sci Rep 2016; 6:20349. [PMID: 26852802 PMCID: PMC4745057 DOI: 10.1038/srep20349] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022] Open
Abstract
The first passage is a generic concept for quantifying when a random quantity such as the position of a diffusing molecule or the value of a stock crosses a preset threshold (target) for the first time. The last decade saw an enlightening series of new results focusing mostly on the so-called mean and global first passage time (MFPT and GFPT, respectively) of such processes. Here we push the understanding of first passage processes one step further. For a simple heterogeneous system we derive rigorously the complete distribution of first passage times (FPTs). Our results demonstrate that the typical FPT significantly differs from the MFPT, which corresponds to the long time behaviour of the FPT distribution. Conversely, the short time behaviour is shown to correspond to trajectories connecting directly from the initial value to the target. Remarkably, we reveal a previously overlooked third characteristic time scale of the first passage dynamics mirroring brief excursion away from the target.
Collapse
|
12
|
Metzler R, Jeon JH, Cherstvy AG. Non-Brownian diffusion in lipid membranes: Experiments and simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2451-2467. [PMID: 26826272 DOI: 10.1016/j.bbamem.2016.01.022] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 12/14/2022]
Abstract
The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane-binding particles. We discuss how membrane compartmentalisation and the particle-membrane binding energy may impact the dynamics and response of lipid membranes. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- R Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany; Department of Physics, Tampere University of Technology, 33101 Tampere, Finland.
| | - J-H Jeon
- Korea Institute for Advanced Study (KIAS), Seoul, Republic of Korea
| | - A G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|