1
|
Huang Q, Chen K, Liu C, Liu G, Shao Y, Zhao C, Chen R, Bu H, Kong L, Shen Y. Strain-dependent evolution of avalanche dynamics in bulk metallic glass. Phys Rev E 2025; 111:025410. [PMID: 40103154 DOI: 10.1103/physreve.111.025410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025]
Abstract
Avalanche phenomena characterized by power-law scaling are observed in amorphous solids and many other nonequilibrium systems during their deformation. Avalanches in these systems often exhibit scale invariance, a feature reminiscent of critical phenomena and universality classes, although their fundamental nature remains unclear. In this paper, we use in situ acoustic emission techniques to experimentally investigate the characteristics and evolution of avalanches during the deformation process of bulk metallic glass (BMG), a representative amorphous solid. We observed abundant avalanche events from the microplastic deformation region to the failure of the sample. We find that avalanches are power-law distributed with an exponent decreasing from 1.61 to 1.49 with increasing deformation throughout the tensile experiment. By quantitatively analyzing the strong strain dependence of various avalanche characteristics, we highlight the importance of additional coefficients that complete the widely studied finite size scaling description of avalanche dynamics and revealed a strain-mediated avalanche scaling mechanism. Through surface morphology analysis and spectral analysis of avalanche signals in BMG samples, we conclude that the underlying process of these avalanches are not macroscopic, such as cracks and large shear band propagation, but is instead related to nanoscale microstructural adjustments. Our results encourage further exploration into the microscopic origins of avalanches and suggest that theoretical frameworks beyond finite-size scaling merit more in-depth investigations.
Collapse
Affiliation(s)
- Qi Huang
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Kaiguo Chen
- National University of Defense Technology, College of Science, Changsha, Hunan 410073, China
| | - Chen Liu
- Innovation and Research Division, Ge-Room, Inc., 93160 Noisy le Grand, France
| | - Guisen Liu
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Yang Shao
- Tsinghua University, School of Materials Science and Engineering, Beijing 100084, China
| | - Chenlong Zhao
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Ran Chen
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Hengtong Bu
- Tsinghua University, School of Materials Science and Engineering, Beijing 100084, China
| | - Lingti Kong
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Yao Shen
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| |
Collapse
|
2
|
L’Estimé M, Schindler M, Shahidzadeh N, Bonn D. Droplet Size Distribution in Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:275-281. [PMID: 38118145 PMCID: PMC10786033 DOI: 10.1021/acs.langmuir.3c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
The droplet size in emulsions is known to affect the rheological properties and plays a crucial role in many applications of emulsions. Despite its importance, the underlying mechanisms governing droplet size in emulsification remain poorly understood. We investigate the average drop size and size distribution upon emulsification with a high-shear mixer for model oil-in-water emulsions stabilized by a surfactant. The size distribution is found to be a log-normal distribution resulting from the repetitive random breakup of drops. High-shear emulsification, the usual way of making emulsions, is therefore found to be very different from turbulent emulsification given by the Kolmogorov-Hinze theory, for which power-law distributions of the drop size are expected. In agreement with this, the mean droplet size does not follow a scaling with the Reynolds number of the emulsification flow but rather a capillary number scaling based on the viscosity of the continuous phase.
Collapse
Affiliation(s)
- Manon L’Estimé
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Michael Schindler
- CNRS
UMR7083, ESPCI Paris, Université PSL, 10 Rue Vauquelin, 75005 Paris, France
| | - Noushine Shahidzadeh
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Sen S, Fernandes RR, Ewoldt RH. Soft glassy materials with tunable extensibility. SOFT MATTER 2023; 20:212-223. [PMID: 38078477 DOI: 10.1039/d3sm01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Extensibility is beyond the paradigm of classical soft glassy materials, and more broadly, yield-stress fluids. Recently, model yield-stress fluids with significant extensibility have been designed by adding polymeric phases to classically viscoplastic dispersions [Nelson et al., J. Rheol., 2018, 62, 357; Nelson et al., Curr. Opin. Solid State Mater. Sci., 2019, 23, 100758; Dekker et al., J. Non-Newtonian Fluid Mech., 2022, 310, 104938]. However, fundamental questions remain about the design of and coupling between the shear and extensional rheology of such systems. In this work, we propose a model material, a mixture of soft glassy microgels and solutions of high molecular weight linear polymers. We establish systematic criteria for the design and thorough rheological characterization of such systems, in both shear and extension. Using our material, we show that it is possible to dramatically change the behavior in extension with minimal change in the shear yield stress and elastic modulus, thus enabling applications that exploit orthogonal modulation of shear and extensional material properties.
Collapse
Affiliation(s)
- Samya Sen
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Rubens R Fernandes
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Abbasian Chaleshtari Z, Salimi-Kenari H, Foudazi R. Glassy and compressed nanoemulsions stabilized with sodium dodecyl sulfate in the presence of poly(ethylene glycol)-diacrylate. SOFT MATTER 2023; 19:5989-6004. [PMID: 37497795 DOI: 10.1039/d3sm00349c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The rheology of concentrated nanoemulsions is critical for their formulation in various applications, such as pharmaceuticals, foods, cosmetics, and templating advanced materials. The rheological properties of nanoemulsions depend on interdroplet interactions, Laplace pressure, dispersed phase volume fraction, and continuous phase properties. The interdroplet forces can be tuned by background electrolytes (i.e., charge screening), surfactant type, the excess surfactant micelle concentration, and depletant molecules such as polymer chains. In the current research, we study the effect of varying the content of poly(ethylene glycol)-diacrylate (PEGDA) on the interfacial tension of the water-oil phase and rheological properties of concentrated nanoemulsions with 50% and 60% volume fractions. Sodium dodecyl sulfate (SDS) is used as the ionic surfactant. The final concentrated nanoemulsions are repulsive according to overall interaction potentials and are in the glass and compressed states based on the effective volume fraction estimation. They contain nearly same SDS concentration on the droplet surface and also in the bulk, but a different amount of PEGDA. The scaled rheological properties of the glassy nanoemulsions show a higher dependency on the PEGDA content and the possible effect of polymer-surfactant complexations compared to those of the compressed ones. This dependency is more pronounced in small strain amplitudes but not in large strains in the non-linear regime. These results provide insights into formulating concentrated nanoemulsions with controlled rheology for expanded application areas.
Collapse
Affiliation(s)
| | - Hamed Salimi-Kenari
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran
| | - Reza Foudazi
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
5
|
Wu B, Iwashita T, Chen WR. Scaling of Shear Rheology of Concentrated Charged Colloidal Suspensions across Glass Transition. J Phys Chem B 2022; 126:922-927. [DOI: 10.1021/acs.jpcb.1c06683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Wu
- Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Takuya Iwashita
- Department of Integrated Science and Technology, Oita University, Oita 870-1192, Japan
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Villarroel C, Düring G. Critical yielding rheology: from externally deformed glasses to active systems. SOFT MATTER 2021; 17:9944-9949. [PMID: 34693958 DOI: 10.1039/d1sm00948f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We use extensive computer simulations to study the yielding transition under two different loading schemes: standard simple shear dynamics and self-propelled dense active systems. In the active systems, a yielding transition toward an out-of-equilibrium flowing state known as the liquid phase is observed when self-propulsion is increased. The range of self-propulsions in which this pure liquid regime exists appears to vanish upon approaching the so-called 'jamming point' at which the solidity of soft-sphere packings is lost. Such an 'active yielding' transition shares similarities with the generic yielding transition for shear flows. A Herschel-Bulkley law is observed along the liquid regime in both loading scenarios, with a clear difference in the critical scaling exponents between the two, suggesting the existence of different universality classes for the yielding transition under different driving conditions. In addition, we present the direct measurements of growing length and time scales for both driving scenarios. A comparison with theoretical predictions from the recent literature reveals poor agreement with our numerical results.
Collapse
Affiliation(s)
- Carlos Villarroel
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
| | - Gustavo Düring
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
- ANID - Millenium Nucleus of Soft Smart Mechanical Metamaterials, Santiago, Chile
| |
Collapse
|
7
|
Benzi R, Divoux T, Barentin C, Manneville S, Sbragaglia M, Toschi F. Continuum modeling of shear startup in soft glassy materials. Phys Rev E 2021; 104:034612. [PMID: 34654204 DOI: 10.1103/physreve.104.034612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 11/07/2022]
Abstract
Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a critical stress σ_{y} such that YSFs are solid for stresses σ imposed below σ_{y}, whereas they flow like liquids for σ>σ_{y}. Under an applied shear rate γ[over ̇], the solid-to-liquid transition is associated with a complex spatiotemporal scenario that depends on the microscopic details of the system, on the boundary conditions, and on the system size. Still, the general phenomenology reported in the literature boils down to a simple sequence that can be divided into a short-time response characterized by the so-called "stress overshoot," followed by stress relaxation towards a steady state. Such relaxation can be either (1) long-lasting, which usually involves the growth of a shear band that can be only transient or that may persist at steady state or (2) abrupt, in which case the solid-to-liquid transition resembles the failure of a brittle material, involving avalanches. In the present paper, we use a continuum model based on a spatially resolved fluidity approach to rationalize the complete scenario associated with the shear-induced yielding of YSFs. A key feature of our model is to provide a scaling for the coordinates of the stress overshoot, i.e., stress σ_{M} and strain γ_{M} as a function of γ[over ̇], which shows good agreement with experimental and numerical data extracted from the literature. Moreover, our approach shows that the power-law scaling σ_{M}(γ[over ̇]) is intimately linked to the growth dynamics of a fluidized boundary layer in the vicinity of the moving boundary. Yet such scaling is independent of the fate of that layer, and of the long-term behavior of the YSF, i.e., whether the steady-state flow profile is homogeneous or shear-banded. Finally, when including the presence of "long-range" correlations, we show that our model displays a ductile to brittle transition, i.e., the stress overshoot reduces into a sharp stress drop associated with avalanches, which impacts the scaling σ_{M}(γ[over ̇]). This generalized model nicely captures subtle avalanche-like features of the transient shear banding dynamics reported in experiments. Our work offers a unified picture of shear-induced yielding in YSFs, whose complex spatiotemporal dynamics are deeply connected to nonlocal effects.
Collapse
Affiliation(s)
- Roberto Benzi
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Thibaut Divoux
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Catherine Barentin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Sébastien Manneville
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Mauro Sbragaglia
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Federico Toschi
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 9 5600 MB Eindhoven, Netherlands and CNR-IAC, Rome, Italy
| |
Collapse
|
8
|
Oyama N, Mizuno H, Ikeda A. Instantaneous Normal Modes Reveal Structural Signatures for the Herschel-Bulkley Rheology in Sheared Glasses. PHYSICAL REVIEW LETTERS 2021; 127:108003. [PMID: 34533339 DOI: 10.1103/physrevlett.127.108003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The Herschel-Bulkley law, a universal constitutive relation, has been empirically known to be applicable to a vast range of soft materials, including sheared glasses. Although the Herschel-Bulkley law has attracted public attention, its structural origin has remained an open question. In this Letter, by means of atomistic simulation of binary Lennard-Jones glasses, we report that the instantaneous normal modes with negative eigenvalues, or so-called imaginary modes, serve as the structural signatures for the Herschel-Bulkley rheology in sheared glasses.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Abstract
Abstract
The review presents current research results for Carbopol-based microgels as yield-stress materials, covering three aspects: chemical, physical and rheological. Such a joint three-aspect study has no analog in the literature. The chemical aspects of Carbopol polymers are presented in terms of a cross-linking polymerization of acrylic acid, their molecular structure, microgel formulation, polyacid dissociation and neutralization, osmotic pressure and associated immense microgel swelling. The physical characterization is focused on models of the shear-induced solid-to-liquid transition of microgels, which are formed of mesoscopic particles typical for soft matter materials. Models that describe interparticle effects are presented to explain the energy states of microgel particles at the mesoscale of scrutiny. Typical representatives of the models utilize attributes of jamming dispersions, micromechanical and polyelectrolyte reactions. Selected relationships that result from the models, such as scaling rules and nondimensional flow characteristics are also presented. The rheological part presents the discussion of problems of yield stress in 2D and 3D deformations, appearance and magnitude of the wall slip. The theory and characteristics of Carbopol microgel deformation in rotational rheometers are presented with graphs for the steady-state measurements, stress-controlled oscillation and two types of transient shear deformation. The review is concluded with suggestions for future research.
Collapse
Affiliation(s)
- Zdzisław Jaworski
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Tadeusz Spychaj
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Anna Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Grzegorz Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| |
Collapse
|
10
|
Glass and Jamming Rheology in Soft Particles Made of PNIPAM and Polyacrylic Acid. Int J Mol Sci 2021; 22:ijms22084032. [PMID: 33919803 PMCID: PMC8070831 DOI: 10.3390/ijms22084032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
The phase behaviour of soft colloids has attracted great attention due to the large variety of new phenomenologies emerging from their ability to pack at very high volume fractions. Here we report rheological measurements on interpenetrated polymer network microgels composed of poly(N-isopropylacrylamide) (PNIPAM) and polyacrylic acid (PAAc) at fixed PAAc content as a function of weight concentration. We found three different rheological regimes characteristic of three different states: a Newtonian shear-thinning fluid, an attractive glass characterized by a yield stress, and a jamming state. We discuss the possible molecular mechanisms driving the formation of these states.
Collapse
|
11
|
Peshkov A, Teitel S. Critical scaling of compression-driven jamming of athermal frictionless spheres in suspension. Phys Rev E 2021; 103:L040901. [PMID: 34006006 DOI: 10.1103/physreve.103.l040901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
We study numerically a system of athermal, overdamped, frictionless spheres, as in a non-Brownian suspension, in two and three dimensions. Compressing the system isotropically at a fixed rate ε[over ̇], we investigate the critical behavior at the jamming transition. The finite compression rate introduces a control timescale, which allows one to probe the critical timescale associated with jamming. As was found previously for steady-state shear-driven jamming, we find for compression-driven jamming that pressure obeys a critical scaling relation as a function of packing fraction ϕ and compression rate ε[over ̇], and that the bulk viscosity p/ε[over ̇] diverges upon jamming. A scaling analysis determines the critical exponents associated with the compression-driven jamming transition. Our results suggest that stress-isotropic, compression-driven jamming may be in the same universality class as stress-anisotropic, shear-driven jamming.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
12
|
Cao C, Liao J, Breedveld V, Weeks ER. Rheology finds distinct glass and jamming transitions in emulsions. SOFT MATTER 2021; 17:2587-2595. [PMID: 33514990 DOI: 10.1039/d0sm02097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study the rheology of monodisperse and bidisperse emulsions with various droplet sizes (1-2 μm diameter). Above a critical volume fraction φc, these systems exhibit solid-like behavior and a yield stress can be detected. Previous experiments suggest that for small thermal particles, rheology will see a glass transition at φc = φg ≈ 0.58; for large athermal systems, rheology will see a jamming transition at φc = φJ ≈ 0.64. However, simulations point out that at the crossover of thermal and athermal regimes, the glass and jamming transitions may both be observed in the same sample. Here we conduct an experiment by shearing four oil-in-water emulsions with a rheometer. We observe both a glass and a jamming transition for our smaller diameter droplets, and only a jamming transition for our larger diameter droplets. The bidisperse sample behaves similarly to the small droplet sample, with two transitions observed. Our rheology data are well-fit by both the Herschel-Bulkley model and the three component model. Based on the fitting parameters, our raw rheological data would not collapse onto a master curve. Our results show that liquid-solid transitions in dispersions are not universal, but depend on particle size.
Collapse
Affiliation(s)
- Cong Cao
- Department of Physics, Emory University, Atlanta, GA 30322, USA.
| | - Jianshan Liao
- School of Chemical & Biomolecular Engineering, Georgia Tech, Atlanta, GA 30332, USA
| | - Victor Breedveld
- School of Chemical & Biomolecular Engineering, Georgia Tech, Atlanta, GA 30332, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Graziano R, Preziosi V, Uva D, Tomaiuolo G, Mohebbi B, Claussen J, Guido S. The microstructure of Carbopol in water under static and flow conditions and its effect on the yield stress. J Colloid Interface Sci 2021; 582:1067-1074. [DOI: 10.1016/j.jcis.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
|
14
|
Mo R, Liao Q, Xu N. Rheological similarities between dense self-propelled and sheared particulate systems. SOFT MATTER 2020; 16:3642-3648. [PMID: 32219271 DOI: 10.1039/d0sm00101e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Different from previous modeling of self-propelled particles, we develop a method to propel particles with a constant average velocity instead of a constant force. This constant propulsion velocity (CPV) approach is validated by its agreement with the conventional constant propulsion force (CPF) approach in the flowing regime. However, the CPV approach shows its advantage of accessing quasistatic flows of yield stress fluids with a vanishing propulsion velocity, while the CPF approach is usually unable to because of finite system size. Taking this advantage, we realize cyclic self-propulsion and study the evolution of the propulsion force with the propelled particle displacement, both in the quasistatic flow regime. By mapping the shear stress and shear rate to the propulsion force and propulsion velocity, we find similar rheological behaviors of self-propelled systems to sheared systems, including the yield force gap between the CPF and CPV approaches, propulsion force overshoot, reversible-irreversible transition under cyclic propulsion, and propulsion bands in plastic flows. These similarities suggest underlying connections between self-propulsion and shear, although they act on systems in different ways.
Collapse
Affiliation(s)
- Ruoyang Mo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Qinyi Liao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Ning Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| |
Collapse
|
15
|
Dinkgreve M, Michels MAJ, Mason TG, Bonn D. Crossover between Athermal Jamming and the Thermal Glass Transition of Suspensions. PHYSICAL REVIEW LETTERS 2018; 121:228001. [PMID: 30547650 DOI: 10.1103/physrevlett.121.228001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 06/09/2023]
Abstract
The non-Newtonian flow behavior of thermal and athermal disordered systems of dispersed uniform particles at high densities have strikingly similar features. By investigating the flow curves of yield-stress fluids and colloidal glasses having different volume fractions, particle sizes, and interactions, we show that both thermal and athermal systems exhibit power-law scaling with respect to the glass and jamming point, respectively, with the same exponents. All yield-stress flow curves can be scaled onto a single universal curve using the Laplace pressure as the stress scale for athermal systems and the osmotic pressure for the thermal systems. Strikingly, the details of interparticle interactions do not matter for the rescaling, showing that they are akin to usual phase transitions of the same universality class. The rescaling allows us to predict the flow properties of these systems from the volume fraction and known material properties.
Collapse
Affiliation(s)
- M Dinkgreve
- Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, Netherlands
| | - M A J Michels
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - T G Mason
- Departments of Physics and Astronomy and Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - D Bonn
- Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, Netherlands
| |
Collapse
|
16
|
Liu T, Khabaz F, Bonnecaze RT, Cloitre M. On the universality of the flow properties of soft-particle glasses. SOFT MATTER 2018; 14:7064-7074. [PMID: 30116807 DOI: 10.1039/c8sm01153b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We identify the minimal interparticle interactions necessary for a particle dynamics simulation to predict the structure and flow behaviour of soft particle glasses (SPGs). Generally, two kinds of forces between the particles must be accounted for in simulations of SPGs: viscous or frictional drag forces and elastic contact forces. Far field drag forces are required to dissipate energy in the simulations and capture the effect of the rheology of the suspending fluid. Elastic forces are found to be dominant compared to near-field drag or other forms of friction forces and are the most important component to compute the rheology. The shear stress, the first and second normal stress differences for different interparticle force laws collapse onto universal master curves of the Herschel-Bulkley form by non-dimensionalizing the stress with the yield stress and the shear rate with the viscosity of the suspending fluid divided by the low-frequency shear modulus. The Herschel-Bulkley exponents are close to 0.5 with a slight dependence on the repulsive pairwise elastic forces.
Collapse
Affiliation(s)
- Tianfei Liu
- McKetta Department of Chemical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
17
|
Nelson AZ, Ewoldt RH. Design of yield-stress fluids: a rheology-to-structure inverse problem. SOFT MATTER 2017; 13:7578-7594. [PMID: 28972605 DOI: 10.1039/c7sm00758b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a paradigm for the design of yield-stress fluids, using six archetypal materials for demonstration. By applying concepts of engineering design, we outline a materials design paradigm that includes (i) morphological organization based on jammed versus networked microstructures, (ii) collected scaling laws for predictive design, (iii) low-dimensional descriptions of function-valued flow data, (iv) consideration of secondary properties including viscous behavior, and (v) a strategy for material concept synthesis based on the juxtaposition of microstructures. By explicitly specifying these design strategies, we seek to create an ontology and database for the engineering of yield-stress fluids. Our proposed design strategy increases the likelihood of finding an optimal material and prevents design fixation by considering multiple material classes to achieve a desired rheological performance. This flips the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions.
Collapse
Affiliation(s)
- Arif Z Nelson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
18
|
Agoritsas E, Martens K. Non-trivial rheological exponents in sheared yield stress fluids. SOFT MATTER 2017; 13:4653-4660. [PMID: 28617485 DOI: 10.1039/c6sm02702d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we discuss possible physical origins of non-trivial exponents in the athermal rheology of soft materials at low but finite driving rates. A key ingredient in our scenario is the presence of a self-consistent mechanical noise that stems from the spatial superposition of long-range elastic responses to localized plastically deforming regions. We study analytically a mean-field model, in which this mechanical noise is accounted for by a stress diffusion term coupled to the plastic activity. Within this description we show how a dependence of the shear modulus and/or the local relaxation time on the shear rate introduces corrections to the usual mean-field prediction, concerning the Herschel-Bulkley-type rheological response of exponent 1/2. This feature of the mean-field picture is then shown to be robust with respect to structural disorder and partial relaxation of the local stress. We test this prediction numerically on a mesoscopic lattice model that implements explicitly the long-range elastic response to localized shear transformations, and we conclude on how our scenario might be tested in rheological experiments.
Collapse
Affiliation(s)
- Elisabeth Agoritsas
- Laboratoire de Physique Théorique, ENS & PSL University, UPMC & Sorbonne Universités, F-75005 Paris, France. and Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Kirsten Martens
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
19
|
Abstract
Soft particulate media include a wide range of systems involving athermal dissipative particles both in non-living and biological materials. Characterization of flows of particulate media is of great practical and theoretical importance. A fascinating feature of these systems is the existence of a critical rigidity transition in the dense regime dominated by highly intermittent fluctuations that severely affects the flow properties. Here, we unveil the underlying mechanisms of rare fluctuations in soft particulate flows. We find that rare fluctuations have different origins above and below the critical jamming density and become suppressed near the jamming transition. We then conjecture a time-independent local fluctuation relation, which we verify numerically, and that gives rise to an effective temperature. We discuss similarities and differences between our proposed effective temperature with the conventional kinetic temperature in the system by means of a universal scaling collapse. Soft particulate flows such as granular media are prone to fluctuations like jamming and avalanches. Here Rahbari et al. consider the statistics of rare fluctuations to identify an effective temperature which, unlike previous ones, is valid for packing fractions both near and far from the jamming point.
Collapse
|
20
|
Vescovi D, Luding S. Merging fluid and solid granular behavior. SOFT MATTER 2016; 12:8616-8628. [PMID: 27722435 DOI: 10.1039/c6sm01444e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Simple homogeneous shear flows of frictionless, deformable particles are studied by particle simulations at large shear rates and for differently soft, deformable particles. Particle stiffness sets a time-scale that can be used to scale the physical quantities; thus the dimensionless shear rate, i.e. the inertial number I (inversely proportional to pressure), can alternatively be expressed as inversely proportional to the square root of particle stiffness. Asymptotic scaling relations for the field variables pressure, shear stress and granular temperature are inferred from simulations in both fluid and solid regimes, corresponding to unjammed and jammed conditions. Then the limit cases are merged to unique constitutive relations that cover also the transition zone in the proximity of jamming. By exploiting the diverging behavior of the scaling laws at the jamming density, we arrive at continuous and differentiable phenomenological constitutive relations for stresses and granular temperature as functions of the volume fraction, shear rate, particle stiffness and distance from jamming. In contrast to steady shear flows of hard particles the (shear) stress ratio μ does not collapse as a function of the inertial number, indicating the need for an additional control parameter. In the range of particle stiffnesses investigated, in the solid regime, only pressure is rate independent, whereas shear stress exhibits a slight shear rate- and stiffness-dependency.
Collapse
Affiliation(s)
- Dalila Vescovi
- Multi Scale Mechanics (MSM), CTW, MESA+, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Stefan Luding
- Multi Scale Mechanics (MSM), CTW, MESA+, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|