1
|
Al-Shemmeri M, Windows-Yule K, Lopez-Quiroga E, Fryer PJ. Coffee bean particle motion in a rotating drum measured using Positron Emission Particle Tracking (PEPT). Food Res Int 2023; 163:112253. [PMID: 36596163 DOI: 10.1016/j.foodres.2022.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022]
Abstract
Physicochemical transformation of coffee during roasting depends on the applied time-temperature profile (i.e., rate of heat transfer), with heat transfer phenomena governed by particle dynamics. Positron Emission Particle Tracking (PEPT), a non-invasive imaging technique, was used here to characterise the granular flow of coffee in a real, pilot-scale rotating drum roaster. The experimental study established the impact of drum speed, batch size and bean density (i.e., roast degree) on the system's particle dynamics. Particle motion data revealed two distinct regions: (i) a disperse (low occupancy, high velocity) region of in-flight particles and (ii) a dense (high occupancy, low velocity) bean bed. Implications of these results for heat transfer suggest that controlling drum speed for different density coffees will provide roaster operators with a tool to modulate conductive heat transfer from the heated drum to the bean bed. These comprehensive data thus inform roasting best practices and support the development of physics-driven models coupling heat and mass transfer to particle dynamics.
Collapse
Affiliation(s)
- Mark Al-Shemmeri
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK; Jacobs Douwe Egberts, R&D Offices, OX16 2QU, UK
| | - Kit Windows-Yule
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK
| | | | - Peter J Fryer
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Windows-Yule CRK, Herald MT, Nicuşan AL, Wiggins CS, Pratx G, Manger S, Odo AE, Leadbeater T, Pellico J, de Rosales RTM, Renaud A, Govender I, Carasik LB, Ruggles AE, Kokalova-Wheldon T, Seville JPK, Parker DJ. Recent advances in positron emission particle tracking: a comparative review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:016101. [PMID: 34814127 DOI: 10.1088/1361-6633/ac3c4c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Positron emission particle tracking (PEPT) is a technique which allows the high-resolution, three-dimensional imaging of particulate and multiphase systems, including systems which are large, dense, and/or optically opaque, and thus difficult to study using other methodologies. In this work, we bring together researchers from the world's foremost PEPT facilities not only to give a balanced and detailed overview and review of the technique but, for the first time, provide a rigorous, direct, quantitative assessment of the relative strengths and weaknesses of all contemporary PEPT methodologies. We provide detailed explanations of the methodologies explored, including also interactive code examples allowing the reader to actively explore, edit and apply the algorithms discussed. The suite of benchmarking tests performed and described within the document is made available in an open-source repository for future researchers.
Collapse
Affiliation(s)
- C R K Windows-Yule
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - M T Herald
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - A L Nicuşan
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - C S Wiggins
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, Box 843015, Richmond, Virginia 23284, United States of America
- Department of Physics and Astronomy, University of Tennessee, Knoxville, 1408 Circle Drive, Knoxville, TN 37996, United States of America
| | - G Pratx
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford University, Stanford, CA, United States of America
- Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, Stanford, CA, United States of America
| | - S Manger
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - A E Odo
- Department of Physics, Federal University Oye-Ekiti, Nigeria
- Department of Physics, University of Cape Town, Rondebosch 7701, South Africa
| | - T Leadbeater
- Department of Physics, University of Cape Town, Rondebosch 7701, South Africa
| | - J Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - R T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - A Renaud
- School of Mathematics, The University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, United Kingdom
| | - I Govender
- Mintek, P/Bag X3015, Ranburg, Gauteng 2121, South Africa
- Centre for Minerals Research, University of Cape Town, P/Bag Rondebosch 7701, South Africa
- School of Engineering, University of KwaZulu Natal, Glenwood 4041, South Africa
| | - L B Carasik
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, Box 843015, Richmond, Virginia 23284, United States of America
| | - A E Ruggles
- Department of Nuclear Engineering, University of Tennessee, Knoxville, 1412 Circle Drive, Knoxville, TN 37996, United States of America
| | - Tz Kokalova-Wheldon
- School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - J P K Seville
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - D J Parker
- School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Windows-Yule CRK, Seville JPK, Ingram A, Parker DJ. Positron Emission Particle Tracking of Granular Flows. Annu Rev Chem Biomol Eng 2020; 11:367-396. [PMID: 32228041 DOI: 10.1146/annurev-chembioeng-011620-120633] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Positron emission particle tracking (PEPT) is a noninvasive technique capable of imaging the three-dimensional dynamics of a wide variety of powders, particles, grains, and/or fluids. The PEPT technique can track the motion of particles with high temporal and spatial resolution and can be used to study various phenomena in systems spanning a broad range of scales, geometries, and physical states. We provide an introduction to the PEPT technique, an overview of its fundamental principles and operation, and a brief review of its application to a diverse range of scientific and industrial systems.
Collapse
Affiliation(s)
- C R K Windows-Yule
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| | - J P K Seville
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| | - A Ingram
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| | - D J Parker
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
6
|
Thoesen A, Ramirez S, Marvi H. Screw‐generated forces in granular media: Experimental, computational, and analytical comparison. AIChE J 2019. [DOI: 10.1002/aic.16517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew Thoesen
- School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University Tempe AZ 85251
| | - Sierra Ramirez
- School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University Tempe AZ 85251
| | - Hamid Marvi
- School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University Tempe AZ 85251
| |
Collapse
|
7
|
Parker DJ. Positron emission particle tracking and its application to granular media. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:051803. [PMID: 28571461 DOI: 10.1063/1.4983046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.
Collapse
Affiliation(s)
- D J Parker
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|