1
|
Khalid B, Alshawmar F. Comprehensive Review of Geotechnical Engineering Properties of Recycled Polyethylene Terephthalate Fibers and Strips for Soil Stabilization. Polymers (Basel) 2024; 16:1764. [PMID: 39000620 PMCID: PMC11244205 DOI: 10.3390/polym16131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
The waste management of plastic has become a pressing environmental issue, with polyethylene terephthalate (PET) being one of the major contributors. To address this challenge, the utilization of recycled PET fibers and strips in geotechnical engineering applications for soil stabilization has gained considerable attention. This review aims to provide a comprehensive study of the geotechnical engineering properties of recycled-PET-reinforced soils. The review examines various factors influencing the performance of PET-reinforced soils, including PET percent content, fiber length, and aspect ratio. It evaluates the mechanical properties, like shear strength, compressibility, bearing capacity, hydraulic behavior, and durability of recycled-PET-reinforced soils. The findings reveal PET reinforcement enhances shear strength, reduces settlement, and increases the bearing capacity and stability of the soil. However, it is observed that the incorporation of recycled PET fibers and strips does not lead to a significant impact on the dry density of the soil. Finally, an environmental and cost comparison analysis of recycled PET fibers and strips was conducted. This review serves as a valuable resource for researchers, engineers, and practitioners involved in the field, offering insights into the geotechnical properties of PET-reinforced soils and outlining future research directions to maximize their effectiveness and sustainability.
Collapse
Affiliation(s)
- Bisma Khalid
- Department of Transportation Engineering and Management, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Fahad Alshawmar
- Department of Civil Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Liu C, Yuan C, Liu S. The Effect of Intrinsic Mechanical Properties on Reducing the Friction-Induced Ripples of Hard-Filler-Modified HDPE. Polymers (Basel) 2023; 15:268. [PMID: 36679149 PMCID: PMC9865395 DOI: 10.3390/polym15020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Ripple deformations induced by friction on polymeric materials have negative effects on the entire stability of operating machineries. These deformations are formed as a response to contacting mechanics, caused by the intrinsic mechanical properties. High-density polyethylene (HDPE) with varying silicon nitride (Si3N4) contents is used to investigate different ripple deformation responses by conducting single-asperity scratch tests. The relationship between the intrinsic mechanical properties and the ripple deformations caused by filler modifications is analyzed in this paper. The results show the coupling of the inherent mechanical properties, and the stick-slip motion of HDPE creates ripple deformations during scratching. The addition of the Si3N4 filler changes the frictional response; the filler weakens the ripples and almost smoothens the scratch, particularly at 4 wt.%, but the continued increase in the Si3N4 content produces noticeable ripples and fluctuations. These notable differences can be attributed to the yield and post-yield responses; the high yield stress and strain-hardening at 4 wt.% provide good friction resistance and stress distribution, thus a smooth scratch is observed. In contrast, increasing the filler content weakens both the yield and post-yield responses, leading to deformation. The results herein reveal the mechanism behind the initial ripple deformation, thus providing fundamental insights into universally derived friction-induced ripples.
Collapse
Affiliation(s)
- Chuanbo Liu
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chengqing Yuan
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Shutian Liu
- Processing and Performance of Materials, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Le Goff M, Bertin E, Martens K. Criticality at a Finite Strain Rate in Fluidized Soft Glassy Materials. PHYSICAL REVIEW LETTERS 2019; 123:108003. [PMID: 31573292 DOI: 10.1103/physrevlett.123.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 06/10/2023]
Abstract
We study the emergence of critical dynamics in the steady shear rheology of fluidized soft glassy materials. Within a mesoscale elastoplastic model accounting for a shear band instability, we show how additional noise can induce a transition from a phase separated to homogeneous flow, accompanied by critical-like fluctuations of the macroscopic shear rate. Both macroscopic quantities and fluctuations exhibit power law behaviors in the vicinity of this transition, consistent with previous experimental findings on vibrated granular media. Altogether, our results suggest a generic scenario for the emergence of criticality when shear weakening mechanisms compete with a fluidizing noise.
Collapse
Affiliation(s)
- Magali Le Goff
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Eric Bertin
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Kirsten Martens
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| |
Collapse
|
4
|
de Arcangelis L, Lippiello E, Pica Ciamarra M, Sarracino A. Induced and endogenous acoustic oscillations in granular faults. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 377:20170389. [PMID: 30478201 PMCID: PMC6282408 DOI: 10.1098/rsta.2017.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
The frictional properties of disordered systems are affected by external perturbations. These perturbations usually weaken the system by reducing the macroscopic friction coefficient. This friction reduction is of particular interest in the case of disordered systems composed of granular particles confined between two plates, as this is a simple model of seismic fault. Indeed, in the geophysical context frictional weakening could explain the unexpected weakness of some faults, as well as earthquake remote triggering. In this manuscript, we review recent results concerning the response of confined granular systems to external perturbations, considering the different mechanisms by which the perturbation could weaken a system, the relevance of the frictional reduction to earthquakes, as well as discussing the intriguing scenario whereby the weakening is not monotonic in the perturbation frequency, so that a re-entrant transition is observed, as the system first enters a fluidized state and then returns to a frictional state.This article is part of the theme issue 'Statistical physics of fracture and earthquakes'.
Collapse
Affiliation(s)
- L de Arcangelis
- Department of Engineering, University of Campania 'Luigi Vanvitelli', 81031 Aversa (CE), Italy
| | - E Lippiello
- Department of Mathematics and Physics, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - M Pica Ciamarra
- Division of Physics and Applied Physics, School of Physics and Mathematical Sciences, Nanyang, Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- CNR-SPIN, Department of Physics, University 'Federico II', Naples, Via Cintia, 80126 Napoli, Italy
| | - A Sarracino
- Department of Engineering, University of Campania 'Luigi Vanvitelli', 81031 Aversa (CE), Italy
| |
Collapse
|
5
|
Ma X, Elbanna A. Strain localization in dry sheared granular materials: A compactivity-based approach. Phys Rev E 2018; 98:022906. [PMID: 30253526 DOI: 10.1103/physreve.98.022906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 11/07/2022]
Abstract
Shear banding is widely observed in natural fault zones as well as in laboratory experiments on granular materials. Understanding the dynamics of strain localization under different loading conditions is essential for quantifying strength evolution of fault gouge and energy partitioning during earthquakes and characterizing rheological transitions and fault zone structure changes. To that end, we develop a physics-based continuum model for strain localization in sheared granular materials. The grain-scale dynamics is described by the shear transformation zone (STZ) theory, a nonequilibrium statistical thermodynamic framework for viscoplastic deformation in amorphous materials. Using a finite strain computational framework, we investigate the initiation and growth of complex shear bands under a variety of loading conditions and identify implications for strength evolution and the ductile to brittle transition. Our numerical results show similar localization patterns to field and laboratory observations and suggest that shear zones show more ductile response at higher confining pressures, lower dilatancy, and loose initial conditions. Lower pressures, higher dilatancy, and dense initial conditions favor a brittle response and larger strength drops. These findings shed light on a range of mechanisms for strength evolution in dry sheared granular materials and provide a critical input to physics-based multiscale models of fault zone instabilities.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ahmed Elbanna
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
6
|
Giacco F, de Arcangelis L, Ciamarra MP, Lippiello E. Synchronized oscillations and acoustic fluidization in confined granular materials. Phys Rev E 2018; 97:010901. [PMID: 29448316 DOI: 10.1103/physreve.97.010901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 06/08/2023]
Abstract
According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.
Collapse
Affiliation(s)
- F Giacco
- Department of Mathematics and Physics, University of Campania "L. Vanvitelli," 81100 Caserta, Italy
| | - L de Arcangelis
- Department of Industrial and Information Engineering, University of Campania "L. Vanvitelli," 81031 Aversa (CE), Italy
| | - M Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University 637371, Singapore
- CNR-SPIN, Department of Physics, University of Naples "Federico II," 80100 Naples, Italy
| | - E Lippiello
- Department of Mathematics and Physics, University of Campania "L. Vanvitelli," 81100 Caserta, Italy
| |
Collapse
|
7
|
Lopez-Berganza JA, Song R, Elbanna A, Espinosa-Marzal RM. Calcium carbonate with nanogranular microstructure yields enhanced toughness. NANOSCALE 2017; 9:16689-16699. [PMID: 29067387 DOI: 10.1039/c7nr05347a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The presence of nanogranular microstructures is a widely reported feature of biominerals that form by classical and non-classical mineralization pathways. Inspired by nature, we have synthesized amorphous calcium carbonate nanoparticles with nanogranular microstructures, whose grain size is tuned by varying the polymer concentration. The response to indentation of single calcium carbonate nanoparticles proceeds via an intermittent stick-slip that reflects the characteristics of the nanogranular microstructure. A two-fold mechanism is thus proposed to enhance the toughness of the nanoparticles, namely nanogranular rearrangement and intergranular bridging by an organic phase and/or hydration. This work not only provides a synthesis route to design biologically inspired mineral nanoparticles with nanogranular structure, but also helps in understanding toughening mechanisms of biominerals arising from their nanoscale heterogeneity.
Collapse
|
8
|
Kothari KR, Elbanna AE. Localization and instability in sheared granular materials: Role of friction and vibration. Phys Rev E 2017; 95:022901. [PMID: 28297960 DOI: 10.1103/physreve.95.022901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies, and variability under different loading conditions have not been fully explored. Here we use a nonequilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as the presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and delocalize slip at these rates. Stick-slip is observed only for frictional grains, and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear-induced dilation and vibration-induced compaction. We discuss the implications of our results on dynamic triggering, quiescence, and strength evolution in gouge-filled fault zones.
Collapse
Affiliation(s)
- Konik R Kothari
- Mechanical Engineering Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - Ahmed E Elbanna
- Civil and Environmental Engineering Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|