1
|
Soomro M, Ayala LF. Unrestricted component count in multiphase lattice Boltzmann: A fugacity-based approach. Phys Rev E 2023; 108:035304. [PMID: 37849190 DOI: 10.1103/physreve.108.035304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023]
Abstract
Studies of multiphase fluids utilizing the lattice Boltzmann method (LBM) are typically severely restricted by the number of components or chemical species being modeled. This restriction is particularly pronounced for multiphase systems exhibiting partial miscibility and significant interfacial mass exchange, which is a common occurrence in realistic multiphase systems. Modeling such systems becomes increasingly complex as the number of chemical species increases due to the increased role of molecular interactions and the types of thermodynamic behavior that become possible. The recently introduced fugacity-based LBM [Soomro et al., Phys. Rev. E 107, 015304 (2023)2470-004510.1103/PhysRevE.107.015304] has provided a thermodynamically consistent modeling platform for multicomponent, partially miscible LBM simulations. However, until now, this fugacity-based LB model had lacked a comprehensive demonstration of its ability to accurately reproduce thermodynamic behavior beyond binary mixtures and to remove any restrictions in a number of components for multiphase LBM. In this paper we closely explore these fugacity-based LBM capabilities by showcasing comprehensive, thermodynamically consistent simulations of multiphase mixtures of up to ten chemical components. The paper begins by validating the model against the Young-Laplace equation for a droplet composed of three components. The model is then applied to study mixtures with a range of component numbers from one to six, showing agreement with rigorous thermodynamic predictions and demonstrating linear scaling of computational time with the number of components. We further investigate ternary systems in detail by exploring a wide range of temperature, pressure, and overall composition conditions to produce various characteristic ternary diagrams. In addition, the model is shown to be unrestricted in the number of phases as demonstrated through simulations of a three-component three-phase equilibrium case. The paper concludes by demonstrating simulations of a ten-component, realistic hydrocarbon mixture, achieving excellent agreement with thermodynamics for both flat interface vapor-liquid equilibrium and curved interface spinodal decomposition cases. This study represents a significant expansion of the scope and capabilities of multiphase LBM simulations that encompass multiphase systems of keen interest in engineering.
Collapse
Affiliation(s)
- Muzammil Soomro
- Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Luis F Ayala
- Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Soomro M, Ayala LF, Peng C, Ayala OM. Fugacity-based lattice Boltzmann method for multicomponent multiphase systems. Phys Rev E 2023; 107:015304. [PMID: 36797960 DOI: 10.1103/physreve.107.015304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
The free-energy model can extend the lattice Boltzmann method to multiphase systems. However, there is a lack of models capable of simulating multicomponent multiphase fluids with partial miscibility. In addition, existing models cannot be generalized to honor thermodynamic information provided by any multicomponent equation of state of choice. In this paper, we introduce a free-energy lattice Boltzmann model where the forcing term is determined by the fugacity of the species, the thermodynamic property that connects species partial pressure to chemical potential calculations. By doing so, we are able to carry out multicomponent multiphase simulations of partially miscible fluids and generalize the methodology for use with any multicomponent equation of state of interest. We test this fugacity-based lattice Boltzmann method for the cases of vapor-liquid equilibrium for two- and three-component mixtures in various temperature and pressure conditions. We demonstrate that the model is able to reliably reproduce phase densities and compositions as predicted by multicomponent thermodynamics and can reproduce different characteristic pressure-composition and temperature-composition envelopes with a high degree of accuracy. We also demonstrate that the model can offer accurate predictions under dynamic conditions.
Collapse
Affiliation(s)
- Muzammil Soomro
- Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Luis F Ayala
- Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheng Peng
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Orlando M Ayala
- Department of Engineering Technology, Old Dominion University, Norfolk, Virginia 23529, USA
| |
Collapse
|
3
|
Atif M, Kolluru PK, Ansumali S. Essentially entropic lattice Boltzmann model: Theory and simulations. Phys Rev E 2022; 106:055307. [PMID: 36559488 DOI: 10.1103/physreve.106.055307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
We present a detailed description of the essentially entropic lattice Boltzmann model. The entropic lattice Boltzmann model guarantees unconditional numerical stability by iteratively solving the nonlinear entropy evolution equation. In this paper we explain the construction of closed-form analytic solutions to this equation. We demonstrate that near equilibrium this analytic solution reduces to the standard lattice Boltzmann model. We consider a few test cases to show that the analytic solution does not exhibit any significant deviation from the iterative solution. We also extend the analytical solution for the Ellipsoidal Statistical (ES)-Bhatnagar-Gross-Krook model to remove the limitation on the Prandtl number for heat transfer problems. The simplicity of the analytic solution removes the computational overhead and algorithmic complexity associated with the entropic lattice Boltzmann models.
Collapse
Affiliation(s)
- Mohammad Atif
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Praveen Kumar Kolluru
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Santosh Ansumali
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.,SankhyaSutra Labs Limited, Bangalore 560045, India
| |
Collapse
|
4
|
Yu Y, Li Q, Huang RZ. Alternative wetting boundary condition for the chemical-potential-based free-energy lattice Boltzmann model. Phys Rev E 2021; 104:015303. [PMID: 34412207 DOI: 10.1103/physreve.104.015303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/15/2021] [Indexed: 11/07/2022]
Abstract
The free-energy lattice Boltzmann (LB) method is a multiphase LB approach based on the thermodynamic theory. Compared with traditional free-energy LB models, which employ a nonideal thermodynamic pressure tensor, the chemical-potential-based free-energy LB model has attracted much attention in recent years as it avoids computing the thermodynamic pressure tensor and its divergence. In this paper, we propose an improved wetting boundary condition for the chemical-potential-based free-energy LB model. Different from the original wetting boundary condition in the literature, the improved wetting boundary condition utilizes a surface chemical potential that is compatible with the chemical potential of the fluid domain. Accordingly, the thermodynamic consistency of the chemical-potential-based free-energy LB model can be retained by the improved wetting boundary condition. Numerical simulations are performed for droplets resting on flat and cylindrical surfaces with different contact angles. The numerical results show that the improved wetting boundary condition yields more reasonable results and the maximum spurious velocities are found to be smaller by 2 ∼ 3 orders of magnitude than those produced by the original wetting boundary condition.
Collapse
Affiliation(s)
- Y Yu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Q Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - R Z Huang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Qin F, Zhao J, Kang Q, Brunschwiler T, Derome D, Carmeliet J. Lattice Boltzmann modeling of heat conduction enhancement by colloidal nanoparticle deposition in microporous structures. Phys Rev E 2021; 103:023311. [PMID: 33736117 DOI: 10.1103/physreve.103.023311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 01/25/2021] [Indexed: 11/07/2022]
Abstract
Drying of colloidal suspension towards the exploitation of the resultant nanoparticle deposition has been applied in different research and engineering fields. Recent experimental studies have shown that neck-based thermal structure (NTS) by colloidal nanoparticle deposition between microsize filler particle configuration (FPC) can significantly enhance vertical heat conduction in innovative three-dimensional chip stacks [Brunschwiler et al., J. Electron. Packag. 138, 041009 (2016)10.1115/1.4034927]. However, an in-depth understanding of the mechanisms of colloidal liquid drying, neck formation, and their influence on heat conduction is still lacking. In this paper, using the lattice Boltzmann method, we model neck formation in FPCs and evaluate the thermal performances of resultant NTSs. The colloidal liquid is found drying continuously from the periphery of the microstructure to its center with a decreasing drying rate. With drying, more necks of smaller size are formed between adjacent filler particles, while fewer necks of larger size are formed between filler particle and the top/bottom plate of the FPCs. The necks, forming critical throats between the filler particles, are found to improve the heat flux significantly, leading to an overall heat conduction enhancement of 2.4 times. In addition, the neck count, size, and distribution as well as the thermal performance of NTSs are found to be similar for three different FPCs at a constant filler particle volume fraction. Our simulation results on neck formation and thermal performances of NTSs are in good agreement with experimental results. This demonstrates that the current lattice Boltzmann models are accurate in modeling drying of colloidal suspension and heat conduction in microporous structures, and have high potentials to study other problems such as surface coating, salt transport, salt crystallization, and food preserving.
Collapse
Affiliation(s)
- Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland.,Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Jianlin Zhao
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Qinjun Kang
- Earth and Environment Sciences Division (EES-16), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA
| | - Thomas Brunschwiler
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Dominique Derome
- Dep. of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke Qc J1K 2R1 Canada
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| |
Collapse
|
6
|
Bala N, Pepona M, Karlin I, Kusumaatmaja H, Semprebon C. Wetting boundaries for a ternary high-density-ratio lattice Boltzmann method. Phys Rev E 2019; 100:013308. [PMID: 31499815 DOI: 10.1103/physreve.100.013308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 11/07/2022]
Abstract
We extend a recently proposed ternary free-energy lattice Boltzmann model with high density contrast [Phys. Rev. Lett. 120, 234501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.234501] by incorporating wetting boundaries at solid walls. The approaches are based on forcing and geometric schemes, with implementations optimized for ternary (and, more generally, higher-order multicomponent) models. Advantages and disadvantages of each method are addressed by performing both static and dynamic tests, including the capillary filling dynamics of a liquid displacing the gas phase and the self-propelled motion of a train of drops. Furthermore, we measure dynamic angles and show that the slip length critically depends on the equilibrium value of the contact angles and whether it belongs to liquid-liquid or liquid-gas interfaces. These results validate the model capabilities of simulating complex ternary fluid dynamic problems near solid boundaries, for example, drop impact solid substrates covered by a lubricant layer.
Collapse
Affiliation(s)
- Neeru Bala
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Marianna Pepona
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Ilya Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Halim Kusumaatmaja
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Ciro Semprebon
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
7
|
Liang H, Liu H, Chai Z, Shi B. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio. Phys Rev E 2019; 99:063306. [PMID: 31330728 DOI: 10.1103/physreve.99.063306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/07/2022]
Abstract
Within the phase-field framework, we present an accurate and robust lattice Boltzmann (LB) method for simulating contact-line motion of immiscible binary fluids on the solid substrate. The most striking advantage of this method lies in that it enables us to handle two-phase flows with mass conservation and a high density contrast of 1000, which is often unavailable in the existing multiphase LB models. To simulate binary fluid flows, the present method utilizes two LB evolution equations, which are respectively used to solve the conservative Allen-Cahn equation for interface capturing, and the incompressible Navier-Stokes equations for hydrodynamic properties. Besides, to account for the substrate wettability, two popular contact angle models including the cubic surface-energy model and the geometrical one are incorporated into the present method, and their performances are numerically evaluated over a wide range of contact angles. The contact-angle hysteresis effect, which is inherent to a rough or chemically inhomogeneous substrate, is also introduced in the present LB approach through the strategy proposed by Ding and Spelt [J. Fluid Mech. 599, 341 (2008)10.1017/S0022112008000190]. The present method is first validated by simulating droplet spreading and capillary intrusion on the ideal or smooth pipes. It is found that the cubic surface-energy and geometrical wetting schemes both offer considerable accuracy for predicting a static contact angle within its middle region, while the former is more stable at extremely small contact angles. Besides, it is shown that the geometrical wetting scheme enables us to obtain better accuracy for predicting dynamic contact points in capillary pipe. Then we use the present LB method to simulate the droplet shearing processes on a nonideal substrate with contact angle hysteresis. The geometrical wetting model is found to be capable of reproducing four typical motion modes of contact line, while the surface-energy wetting scheme fails to predict the hysteresis behaviors in some cases. At last, a complex contact-line dynamic problem of three-dimensional microscale droplet impact on a wettable solid is simulated, and it is found that the numerical results for droplet shapes agree well with the experimental data.
Collapse
Affiliation(s)
- Hong Liang
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Haihu Liu
- School of Energy and Power Engineering, Xian Jiaotong University, Xian 710049, China
| | - Zhenhua Chai
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Baochang Shi
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Qin F, Mazloomi Moqaddam A, Del Carro L, Kang Q, Brunschwiler T, Derome D, Carmeliet J. Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures. Phys Rev E 2019; 99:053306. [PMID: 31212433 DOI: 10.1103/physreve.99.053306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A tricoupled hybrid lattice Boltzmann model (LBM) is developed to simulate colloidal liquid evaporation and colloidal particle deposition during the nonisothermal drying of colloidal suspensions in micropore structures. An entropic multiple-relaxation-time multirange pseudopotential two-phase LBM for isothermal interfacial flow is first coupled to an extended temperature equation for simulating nonisothermal liquid drying. Then the coupled model is further coupled with a modified convection diffusion equation to consider the nonisothermal drying of colloidal suspensions. Two drying examples are considered. First, drying of colloidal suspensions in a two-pillar micropore structure is simulated in two dimensions (2D), and the final configuration of colloidal particles is compared with the experimental one. Good agreement is observed. Second, at the temperature of 343.15 K (70^{∘}C), drying of colloidal suspensions in a complex spiral-shaped micropore structure containing 220 pillars is simulated (also in 2D). The drying pattern follows the designed spiral shape due to capillary pumping, i.e., transport of the liquid from larger pores to smaller ones by capillary pressure difference. Since the colloidal particles are passively carried with liquid, they accumulate at the small menisci as drying proceeds. As liquid evaporates at the small menisci, colloidal particles are deposited, eventually forming solid structures between the pillars (primarily), and at the base of the pillars (secondarily). As a result, the particle deposition conforms to the spiral route. Qualitatively, the simulated liquid and particle configurations agree well with the experimental ones during the entire drying process. Quantitatively, the model demonstrates that the evaporation rate and the particle accumulation rate slowly decrease during drying, similar to what is seen in the experimental results, which is due to the reduction of the liquid-vapor interfacial area. In conclusion, the hybrid model shows the capability and accuracy for simulating nonisothermal drying of colloidal suspensions in a complex micropore structure both qualitatively and quantitatively, as it includes all the required physics and captures all the complex features observed experimentally. Such a tricoupled LBM has a high potential to become an efficient numerical tool for further investigation of real and complex engineering problems incorporating drying of colloidal suspensions in porous media.
Collapse
Affiliation(s)
- Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8093, Switzerland
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Ali Mazloomi Moqaddam
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Luca Del Carro
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Qinjun Kang
- Earth and Environment Sciences Division (EES-16), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA
| | - Thomas Brunschwiler
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Dominique Derome
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8093, Switzerland
| |
Collapse
|
9
|
Qiao Z, Yang X, Zhang Y. Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng-Robinson equation of state. Phys Rev E 2018; 98:023306. [PMID: 30253477 DOI: 10.1103/physreve.98.023306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 11/07/2022]
Abstract
Peng-Robinson (P-R) equation of state (EOS) has been widely used in the petroleum industry for hydrocarbon fluids. In this work, a three-dimensional diffuse interface model with P-R EOS for two-phase fluid system is solved by the lattice Boltzmann (LB) method. In this diffuse interface model, an Allen-Cahn (A-C) type phase equation with strong nonlinear source term is derived. Using the multiscale Chapman-Enskog analysis, the A-C type phase equation can be recovered from the proposed LB method. Besides, a Lagrange multiplier is introduced based on the mesoscopic character of the LB scheme so that total mass of the hydrocarbon system is preserved. Three-dimensional numerical simulations of realistic hydrocarbon components, such as isobutane and propane, are implemented to illustrate the effectiveness of the proposed mass conservative LB scheme. Numerical results reach a better agreement with laboratory data compared to previous results of two-dimensional numerical simulations.
Collapse
Affiliation(s)
- Zhonghua Qiao
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xuguang Yang
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.,School of Mathematics and Computational Science, Hunan First Normal University, Changsha, People's Republic of China
| | - Yuze Zhang
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
10
|
Hajabdollahi F, Premnath KN. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations. Phys Rev E 2018; 97:053303. [PMID: 29906868 DOI: 10.1103/physreve.97.053303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 11/07/2022]
Abstract
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several conclusions are drawn from the analysis of the structure of the non-GI errors and the associated corrections, with particular emphasis on their dependence on the preconditioning parameter. The GI preconditioned central-moment LB method is validated for a number of complex flow benchmark problems and its effectiveness to achieve convergence acceleration and improvement in accuracy is demonstrated.
Collapse
Affiliation(s)
- Farzaneh Hajabdollahi
- Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, Colorado 80124, USA
| | - Kannan N Premnath
- Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, Colorado 80124, USA
| |
Collapse
|
11
|
Mazloomi Moqaddam A, Derome D, Carmeliet J. Dynamics of Contact Line Pinning and Depinning of Droplets Evaporating on Microribs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5635-5645. [PMID: 29667830 DOI: 10.1021/acs.langmuir.8b00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The contact line dynamics of evaporating droplets deposited on a set of parallel microribs is analyzed with the use of a recently developed entropic lattice Boltzmann model for two-phase flow. Upon deposition, part of the droplet penetrates into the space between ribs because of capillary action, whereas the remaining liquid of the droplet remains pinned on top of the microribs. In the first stage, evaporation continues until the droplet undergoes a series of pinning-depinning events, showing alternatively the constant contact radius and constant contact angle modes. While the droplet is pinned, evaporation results in a contact angle reduction, whereas the contact radius remains constant. At a critical contact angle, the contact line depins, the contact radius reduces, and the droplet rearranges to a larger apparent contact angle. This pinning-depinning behavior goes on until the liquid above the microribs is evaporated. By computing the Gibbs free energy taking into account the interfacial energy, pressure terms, and viscous dissipation due to drop internal flow, we found that the mechanism that causes the unpinning of the contact line results from an excess in Gibbs free energy. The spacing distance and the rib height play an important role in controlling the pinning-depinning cycling, the critical contact angle, and the excess Gibbs free energy. However, we found that neither the critical contact angle nor the maximum excess Gibbs free energy depends on the rib width. We show that the different terms, that is, pressure term, viscous dissipation, and interfacial energy, contributing to the excess Gibbs free energy, can be varied differently by varying different geometrical properties of the microribs. It is demonstrated that, by varying the spacing distance between the ribs, the energy barrier is controlled by the interfacial energy while the contribution of the viscous dissipation is dominant if either rib height or width is changed. Main finding of this is study is that, for microrib patterned surfaces, the energy barrier required for the contact line to depin can be enlarged by increasing the spacing or the rib height, which can be important for practical applications.
Collapse
Affiliation(s)
- Ali Mazloomi Moqaddam
- Chair of Building Physics, Department of Mechanical and Process Engineering , ETH Zurich , 8092 Zurich , Switzerland
- Laboratory for Multiscale Studies in Building Physics, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Dominique Derome
- Laboratory for Multiscale Studies in Building Physics, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering , ETH Zurich , 8092 Zurich , Switzerland
- Laboratory for Multiscale Studies in Building Physics, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| |
Collapse
|
12
|
Chantelot P, Mazloomi Moqaddam A, Gauthier A, Chikatamarla SS, Clanet C, Karlin IV, Quéré D. Water ring-bouncing on repellent singularities. SOFT MATTER 2018; 14:2227-2233. [PMID: 29376534 DOI: 10.1039/c7sm02004j] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Texturing a flat superhydrophobic substrate with point-like superhydrophobic macrotextures of the same repellency makes impacting water droplets take off as rings, which leads to shorter bouncing times than on a flat substrate. We investigate the contact time reduction on such elementary macrotextures through experiment and simulations. We understand the observations by decomposing the impacting drop reshaped by the defect into sub-units (or blobs) whose size is fixed by the liquid ring width. We test the blob picture by looking at the reduction of contact time for off-centered impacts and for impacts in grooves that produce liquid ribbons where the blob size is fixed by the width of the channel.
Collapse
Affiliation(s)
- Pierre Chantelot
- Physique & Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France and LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau, France
| | - Ali Mazloomi Moqaddam
- Aerothermochemistry and Combustion Systems Laboratory, Mechanical and Process Engineering Department, ETH Zurich, 8092 Zurich, Switzerland
| | - Anaïs Gauthier
- Physique & Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France and LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau, France
| | - Shyam S Chikatamarla
- Aerothermochemistry and Combustion Systems Laboratory, Mechanical and Process Engineering Department, ETH Zurich, 8092 Zurich, Switzerland
| | - Christophe Clanet
- Physique & Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France and LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau, France
| | - Ilya V Karlin
- Aerothermochemistry and Combustion Systems Laboratory, Mechanical and Process Engineering Department, ETH Zurich, 8092 Zurich, Switzerland
| | - David Quéré
- Physique & Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France and LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau, France
| |
Collapse
|
13
|
Lattice-Boltzmann flow simulation of an oil-in-water emulsion through a coalescing filter: Effects of filter structure. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Dorschner B, Chikatamarla SS, Karlin IV. Fluid-structure interaction with the entropic lattice Boltzmann method. Phys Rev E 2018; 97:023305. [PMID: 29548176 DOI: 10.1103/physreve.97.023305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 06/08/2023]
Abstract
We propose a fluid-structure interaction (FSI) scheme using the entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid domain in combination with a nonlinear finite element solver for the structural part. We show the validity of the proposed scheme for various challenging setups by comparison to literature data. Beyond validation, we extend the KBC model to multiphase flows and couple it with a finite element method (FEM) solver. Robustness and viability of the entropic multi-relaxation time model for complex FSI applications is shown by simulations of droplet impact on elastic superhydrophobic surfaces.
Collapse
Affiliation(s)
- B Dorschner
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S S Chikatamarla
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - I V Karlin
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
15
|
Coreixas C, Wissocq G, Puigt G, Boussuge JF, Sagaut P. Recursive regularization step for high-order lattice Boltzmann methods. Phys Rev E 2017; 96:033306. [PMID: 29346972 DOI: 10.1103/physreve.96.033306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/07/2022]
Abstract
A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 10^{4} to 10^{6}, and where a thorough analysis of the case at Re=3×10^{4} is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.
Collapse
Affiliation(s)
| | | | - Guillaume Puigt
- CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse Cedex, France
| | | | - Pierre Sagaut
- Aix-Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France
| |
Collapse
|
16
|
Guo L, Xiao L, Shan X, Zhang X. Modeling adsorption with lattice Boltzmann equation. Sci Rep 2016; 6:27134. [PMID: 27256325 PMCID: PMC4891696 DOI: 10.1038/srep27134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/13/2016] [Indexed: 11/08/2022] Open
Abstract
The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied.
Collapse
Affiliation(s)
- Long Guo
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Lizhi Xiao
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Xiaowen Shan
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- Beijing Aeronautical Science and Technology Research Institute of COMAC, Beijing 102211, China
| | - Xiaoling Zhang
- Research Institute of Petroleum Exploration and Development, China National Petroleum Cooperation, Beijing 100083, China
| |
Collapse
|