1
|
Jaleel AAA, Mandal D, Thomas JE, Rajesh R. Freezing phase transition in hard-core lattice gases on the triangular lattice with exclusion up to seventh next-nearest neighbor. Phys Rev E 2022; 106:044136. [PMID: 36397521 DOI: 10.1103/physreve.106.044136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Hard-core lattice-gas models are minimal models to study entropy-driven phase transitions. In the k-nearest-neighbor lattice gas, a particle excludes all sites up to the kth next-nearest neighbors from being occupied by another particle. As k increases from one, it extrapolates from nearest-neighbor exclusion to the hard-sphere gas. In this paper we study the model on the triangular lattice for k≤7 using a flat histogram algorithm that includes cluster moves. Earlier studies focused on k≤3. We show that for 4≤k≤7, the system undergoes a single phase transition from a low-density fluid phase to a high-density sublattice-ordered phase. Using partition function zeros and nonconvexity properties of the entropy, we show that the transitions are discontinuous. The critical chemical potential, coexistence densities, and critical pressure are determined accurately.
Collapse
Affiliation(s)
- Asweel Ahmed A Jaleel
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Department of Physics, Sadakathullah Appa College, Tirunelveli, Tamil Nadu 627011, India
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jetin E Thomas
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
2
|
Sellitto M. Weakly first-order transition in an athermal lattice gas. Phys Rev E 2022; 105:054101. [PMID: 35706265 DOI: 10.1103/physreve.105.054101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
We investigate the phase behavior of a two-dimensional athermal lattice gas in which every hard-core particle can have two or fewer nearest neighboring occupied sites on the square lattice. The ground state and close packing density are determined and it is found that at large chemical potential the model undergoes an ordering phase transition with preferential sublattice occupation. Although near the transition point the particle density and entropy exhibit an apparent discontinuity, we find that the order parameter and fluctuations of thermodynamic quantities do not scale with the system volume. These paradoxical results are reconciled by analyzing the size-dependent flow of the thermal exponent by phenomenological renormalization and the curve-crossing method, which lead to a weakly first-order phase transition scenario.
Collapse
Affiliation(s)
- Mauro Sellitto
- Dipartimento di Ingegneria, Università degli Studi della Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy and The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
3
|
Abstract
The phase behavior of a Biroli–Mézard model on the two dimensional square lattice in which hard-core particles can have at most three nearest neighboring occupied sites is investigated by means of grand-canonical Monte Carlo simulations. Finite-size scaling analysis of relevant thermodynamic quantities obtained via the histogram reweighting technique reveals that at high-density, the model undergoes a first-order phase transition with preferential sublattice occupation to a crystal phase with enantiomorph ground state configurations, in close analogy to the hard-core lattice gas with the exclusion range extended up to the third shell of nearest neighbors.
Collapse
Affiliation(s)
- Mauro Sellitto
- Dipartimento di Ingegneria, Università degli Studi della Campania “Luigi Vanvitelli,” Via Roma 29, 81031 Aversa, Italy and The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
4
|
Ibagon I, Furlan AP, Oliveira TJ, Dickman R. Phase diagram and critical properties of a two-dimensional associating lattice gas. Phys Rev E 2021; 104:064120. [PMID: 35030842 DOI: 10.1103/physreve.104.064120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
We revisit the associating lattice gas (ALG) introduced by Henriques et al. [Phys. Rev. E 71, 031504 (2005)PLEEE81539-375510.1103/PhysRevE.71.031504] in its symmetric version. In this model, defined on the triangular lattice, interaction between molecules occupying nearest-neighbor sites depends on their relative orientation, mimicking the formation of hydrogen bonds in network-forming fluids. Although all previous studies of this model agree that it has a disordered fluid (DF), a low-density liquid (LDL), and a high-density liquid (HDL) phase, quite different forms have been reported for its phase diagram. Here, we present a thorough investigation of its phase behavior using both transfer matrix calculations and Monte Carlo (MC) simulations, along with finite-size scaling extrapolations. Results in striking agreement are found using these methods. The critical point associated with the DF-HDL transition at full occupancy, identified by Furlan et al. [Phys. Rev. E 100, 022109 (2019)2470-004510.1103/PhysRevE.100.022109] is shown to be one terminus of a critical line separating these phases. In opposition to previous simulation studies, we find that the transition between the DF and LDL phases is always discontinuous, similar to the LDL-HDL transition. The associated coexistence lines meet at the point where the DF-HDL critical line ends, making it a critical-end-point. Overall, the form of the phase diagram observed in our simulations is very similar to that found in the exact solution of the model on a Husimi lattice. Our results confirm that, despite the existence of some waterlike anomalies in this model, it is unable to reproduce key features of the phase behavior of liquid water.
Collapse
Affiliation(s)
- I Ibagon
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, C.P. 702, 30123-970, Belo Horizonte, Minas Gerais-Brazil
| | - A P Furlan
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, C.P. 702, 30123-970, Belo Horizonte, Minas Gerais-Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - R Dickman
- Departamento de Física and National Institute of Science and Technology for Complex Systems, ICEx, Universidade Federal de Minas Gerais, C.P. 702, 30123-970 Belo Horizonte, Minas Gerais-Brazil
| |
Collapse
|
5
|
Jaleel AAA, Thomas JE, Mandal D, Sumedha, Rajesh R. Rejection-free cluster Wang-Landau algorithm for hard-core lattice gases. Phys Rev E 2021; 104:045310. [PMID: 34781550 DOI: 10.1103/physreve.104.045310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 11/07/2022]
Abstract
We introduce a rejection-free, flat histogram, cluster algorithm to determine the density of states of hard-core lattice gases. We show that the algorithm is able to efficiently sample low entropy states that are usually difficult to access, even when the excluded volume per particle is large. The algorithm is based on simultaneously evaporating all the particles in a strip and reoccupying these sites with a new appropriately chosen configuration. We implement the algorithm for the particular case of the hard-core lattice gas in which the first k next-nearest neighbors of a particle are excluded from being occupied. It is shown that the algorithm is able to reproduce the known results for k=1,2,3 both on the square and cubic lattices. We also show that, in comparison, the corresponding flat histogram algorithms with either local moves or unbiased cluster moves are less accurate and do not converge as the system size increases.
Collapse
Affiliation(s)
- Asweel Ahmed A Jaleel
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Jetin E Thomas
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sumedha
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.,School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
6
|
Darjani S, Koplik J, Pauchard V, Banerjee S. Adsorption kinetics and thermodynamic properties of a binary mixture of hard-core particles on a square lattice. J Chem Phys 2021; 154:074705. [PMID: 33607911 DOI: 10.1063/5.0039706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The adsorption kinetics and thermodynamic properties of a binary mixture on a square lattice are studied using the random sequential adsorption with surface diffusion (RSAD). We compare the adsorption of binary species with different equilibrium rate constants and effective rates of adsorption to a surface and find that the temporal evolution of surface coverages of both species can be obtained through the use of the blocking function of a system with irreversible adsorption of highly diffusive particles. Binary mixtures, when one of the components follows the random sequential adsorption (RSA) without surface diffusion and the other follows the RSAD model, display competitive adsorption in addition to cooperative phenomena. Specifically, (i) species replacement occurs over a long period of time, while the total coverage remains unchanged after a short time, (ii) the presence of the RSAD component shifts the jamming coverage to the higher values, and (iii) the maximum jamming coverage is obtained when the effective adsorption of the RSA type components is lower than the other adsorbing particles.
Collapse
Affiliation(s)
- Shaghayegh Darjani
- Energy Institute and Department of Chemical Engineering, City College of New York, New York, New York 10031, USA
| | - Joel Koplik
- Benjamin Levich Institute and Department of Physics, City College of New York, New York, New York 10031, USA
| | - Vincent Pauchard
- Energy Institute and Department of Chemical Engineering, City College of New York, New York, New York 10031, USA
| | - Sanjoy Banerjee
- Energy Institute and Department of Chemical Engineering, City College of New York, New York, New York 10031, USA
| |
Collapse
|
7
|
Rodrigues NT, Oliveira TJ. Fluid-fluid demixing and density anomaly in a ternary mixture of hard spheres. Phys Rev E 2020; 101:062102. [PMID: 32688563 DOI: 10.1103/physreve.101.062102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 11/07/2022]
Abstract
We report the grand-canonical solution of a ternary mixture of discrete hard spheres defined on a Husimi lattice built with cubes, which provides a mean-field approximation for this system on the cubic lattice. The mixture is composed of pointlike particles (0NN) and particles which exclude up to their first (1NN) and second neighbors (2NN), with activities z_{0}, z_{1}, and z_{2}, respectively. Our solution reveals a very rich thermodynamic behavior, with two solid phases associated with the ordering of 1NN (S1) or 2NN particles (S2), and two fluid phases, one being regular (RF) and the other characterized by a dominance of 0NN particles (F0 phase). However, in most part of the phase diagram these fluid (F) phases are indistinguishable. Discontinuous transitions are observed between all the four phases, yielding several coexistence surfaces in the system, among which a fluid-fluid and a solid-solid demixing surface. The former one is limited by a line of critical points and a line of triple points (where the phases RF-F0-S2 coexist), both meeting at a special point, after which the fluid-fluid coexistence becomes metastable. Another line of triple points is found, connecting the F-S1, F-S2, and S1-S2 coexistence surfaces. A critical F-S1 surface is also observed meeting the F-S1 coexistence one at a line of tricritical points. Furthermore, a thermodynamic anomaly characterized by minima in isobaric curves of the total density of particles is found, yielding three surfaces of minimal density in the activity space, depending on which activity is kept fixed during its calculation.
Collapse
Affiliation(s)
- Nathann T Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
8
|
Rodrigues NT, Oliveira TJ. Thermodynamic behavior of binary mixtures of hard spheres: Semianalytical solutions on a Husimi lattice built with cubes. Phys Rev E 2019; 100:032112. [PMID: 31639939 DOI: 10.1103/physreve.100.032112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 11/07/2022]
Abstract
We study binary mixtures of hard particles, which exclude up to their kth nearest neighbors (kNN) on the simple cubic lattice and have activities z_{k}. In the first model analyzed, point particles (0NN) are mixed with 1NN ones. The grand-canonical solution of this model on a Husimi lattice built with cubes unveils a phase diagram with a fluid and a solid phase separated by a continuous and a discontinuous transition line which meet at a tricritical point. A density anomaly, characterized by minima in isobaric curves of the total density of particles against z_{0} (or z_{1}), is also observed in this system. Overall, this scenario is identical to the one previously found for this model when defined on the square lattice. The second model investigated consists of the mixture of 1NN particles with 2NN ones. In this case, a very rich phase behavior is found in its Husimi lattice solution, with two solid phases-one associated with the ordering of 1NN particles (S1) and the other with the ordering of 2NN ones (S2)-beyond the fluid (F) phase. While the transitions between F-S2 and S1-S2 phases are always discontinuous, the F-S1 transition is continuous (discontinuous) for small (large) z_{2}. The critical and coexistence F-S1 lines meet at a tricritical point. Moreover, the coexistence F-S1,F-S2, and S1-S2 lines meet at a triple point. Density anomalies are absent in this case.
Collapse
Affiliation(s)
- Nathann T Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
9
|
Rodrigues NT, Oliveira TJ. Three stable phases and thermodynamic anomaly in a binary mixture of hard particles. J Chem Phys 2019; 151:024504. [DOI: 10.1063/1.5109896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nathann T. Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tiago J. Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
10
|
Mandal D, Rajesh R. Columnar-disorder phase boundary in a mixture of hard squares and dimers. Phys Rev E 2017; 96:012140. [PMID: 29347141 DOI: 10.1103/physreve.96.012140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 06/07/2023]
Abstract
A mixture of hard squares, dimers, and vacancies on a square lattice is known to undergo a transition from a low-density disordered phase to a high-density columnar ordered phase. Along the fully packed square-dimer line, the system undergoes a Kosterliz-Thouless-type transition to a phase with power law correlations. We estimate the phase boundary separating the ordered and disordered phases by calculating the interfacial tension between two differently ordered phases within two different approximation schemes. The analytically obtained phase boundary is in good agreement with Monte Carlo simulations.
Collapse
Affiliation(s)
- Dipanjan Mandal
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|