1
|
Mukherjee S, Basu A. Scaling or multiscaling: Varieties of universality in a driven nonlinear model. Phys Rev E 2021; 103:032126. [PMID: 33862751 DOI: 10.1103/physreve.103.032126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 11/07/2022]
Abstract
Physical understanding of how the interplay between symmetries and nonlinear effects can control the scaling and multiscaling properties in a coupled driven system, such as magnetohydrodynamic turbulence or turbulent binary fluid mixtures, remains elusive. To address this generic issue, we construct a conceptual nonlinear hydrodynamic model, parametrized jointly by the nonlinear coefficients, and the spatial scaling of the variances of the advecting stochastic velocity and the stochastic additive driving force, respectively. By using a perturbative one-loop dynamic renormalization group method, we calculate the multiscaling exponents of the suitably defined equal-time structure functions of the dynamical variable. We show that depending upon the control parameters the model can display a variety of universal scaling behaviors ranging from simple scaling to multiscaling.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Barasat Government College, 10, KNC Road, Gupta Colony, Barasat, Kolkata 700124, West Bengal, India.,Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Calcutta 700064, West Bengal, India
| | - Abhik Basu
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Calcutta 700064, West Bengal, India
| |
Collapse
|
2
|
|
3
|
Abstract
We review the study of the scaling properties of geometric operators, such as the geodesic length and the volume of hypersurfaces, in the context of the Asymptotic Safety scenario for quantum gravity. We discuss the use of such operators and how they can be embedded in the effective average action formalism. We report the anomalous dimension of the geometric operators in the Einstein–Hilbert truncation via different approximations by considering simple extensions of previous studies.
Collapse
|
4
|
Banerjee T, Basu A. Perspectives on scaling and multiscaling in passive scalar turbulence. Phys Rev E 2018; 97:052124. [PMID: 29906943 DOI: 10.1103/physreve.97.052124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 06/08/2023]
Abstract
We revisit the well-known problem of multiscaling in substances passively advected by homogeneous and isotropic turbulent flows or passive scalar turbulence. To that end we propose a two-parameter continuum hydrodynamic model for an advected substance concentration θ, parametrized jointly by y and y[over ¯], that characterize the spatial scaling behavior of the variances of the advecting stochastic velocity and the stochastic additive driving force, respectively. We analyze it within a one-loop dynamic renormalization group method to calculate the multiscaling exponents of the equal-time structure functions of θ. We show how the interplay between the advective velocity and the additive force may lead to simple scaling or multiscaling. In one limit, our results reduce to the well-known results from the Kraichnan model for passive scalar. Our framework of analysis should be of help for analytical approaches for the still intractable problem of fluid turbulence itself.
Collapse
Affiliation(s)
- Tirthankar Banerjee
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Calcutta 700064, India
| | - Abhik Basu
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Calcutta 700064, India
| |
Collapse
|
5
|
Mathey S, Agoritsas E, Kloss T, Lecomte V, Canet L. Kardar-Parisi-Zhang equation with short-range correlated noise: Emergent symmetries and nonuniversal observables. Phys Rev E 2017; 95:032117. [PMID: 28415329 DOI: 10.1103/physreve.95.032117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 11/07/2022]
Abstract
We investigate the stationary-state fluctuations of a growing one-dimensional interface described by the Kardar-Parisi-Zhang (KPZ) dynamics with a noise featuring smooth spatial correlations of characteristic range ξ. We employ nonperturbative functional renormalization group methods to resolve the properties of the system at all scales. We show that the physics of the standard (uncorrelated) KPZ equation emerges on large scales independently of ξ. Moreover, the renormalization group flow is followed from the initial condition to the fixed point, that is, from the microscopic dynamics to the large-distance properties. This provides access to the small-scale features (and their dependence on the details of the noise correlations) as well as to the universal large-scale physics. In particular, we compute the kinetic energy spectrum of the stationary state as well as its nonuniversal amplitude. The latter is experimentally accessible by measurements at large scales and retains a signature of the microscopic noise correlations. Our results are compared to previous analytical and numerical results from independent approaches. They are in agreement with direct numerical simulations for the kinetic energy spectrum as well as with the prediction, obtained with the replica trick by Gaussian variational method, of a crossover in ξ of the nonuniversal amplitude of this spectrum.
Collapse
Affiliation(s)
- Steven Mathey
- LPMMC, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France
| | - Elisabeth Agoritsas
- LIPhy, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France.,Laboratoire de Physique Théorique, ENS, PSL University; UPMC, Sorbonne Universités; and CNRS, 75005 Paris, France
| | - Thomas Kloss
- INAC-PHELIQS, Université Grenoble Alpes and CEA, 38000 Grenoble, France
| | - Vivien Lecomte
- LIPhy, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France.,LPMA, Université Paris Diderot, Université Pierre et Marie Curie, and CNRS, 75013 Paris, France
| | - Léonie Canet
- LPMMC, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France
| |
Collapse
|
6
|
Hnatič M, Zalom P. Helical turbulent Prandtl number in the A model of passive vector advection. Phys Rev E 2016; 94:053113. [PMID: 27967141 DOI: 10.1103/physreve.94.053113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Indexed: 11/07/2022]
Abstract
Using the field theoretic renormalization group technique in the two-loop approximation, turbulent Prandtl numbers are obtained in the general A model of passive vector advected by fully developed turbulent velocity field with violation of spatial parity introduced via the continuous parameter ρ ranging from ρ=0 (no violation of spatial parity) to |ρ|=1 (maximum violation of spatial parity). Values of A represent a continuously adjustable parameter which governs the interaction structure of the model. In nonhelical environments, we demonstrate that A is restricted to the interval -1.723≤A≤2.800 (rounded to 3 decimal places) in the two-loop order of the field theoretic model. However, when ρ>0.749 (rounded to 3 decimal places), the restrictions may be removed, which means that presence of helicity exerts a stabilizing effect onto the possible stationary regimes of the system. Furthermore, three physically important cases A∈{-1,0,1} are shown to lie deep within the allowed interval of A for all values of ρ. For the model of the linearized Navier-Stokes equations (A=-1) up to date unknown helical values of the turbulent Prandtl number have been shown to equal 1 regardless of parity violation. Furthermore, we have shown that interaction parameter A exerts strong influence on advection-diffusion processes in turbulent environments with broken spatial parity. By varying A continuously, we explain high stability of the kinematic MHD model (A=1) against helical effects as a result of its proximity to the A=0.912 (rounded to 3 decimal places) case where helical effects are completely suppressed. Contrary, for the physically important A=0 model, we show that it lies deep within the interval of models where helical effects cause the turbulent Prandtl number to decrease with |ρ|. We thus identify internal structure of interactions given by the parameter A, and not the vector character of the admixture itself being the dominant factor influencing diffusion-advection processes in the helical A model.
Collapse
Affiliation(s)
- M Hnatič
- Faculty of Sciences, P.J. Safarik University, Košice, Slovakia.,Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia.,Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980 Dubna, Moscow Region, Russian Federation
| | - P Zalom
- Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia.,Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980 Dubna, Moscow Region, Russian Federation
| |
Collapse
|
7
|
Canet L, Delamotte B, Wschebor N. Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution. Phys Rev E 2016; 93:063101. [PMID: 27415353 DOI: 10.1103/physreve.93.063101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Indexed: 11/06/2022]
Abstract
We investigate the regime of fully developed homogeneous and isotropic turbulence of the Navier-Stokes (NS) equation in the presence of a stochastic forcing, using the nonperturbative (functional) renormalization group (NPRG). Within a simple approximation based on symmetries, we obtain the fixed-point solution of the NPRG flow equations that corresponds to fully developed turbulence both in d=2 and 3 dimensions. Deviations to the dimensional scalings (Kolmogorov in d=3 or Kraichnan-Batchelor in d=2) are found for the two-point functions. To further analyze these deviations, we derive exact flow equations in the large wave-number limit, and show that the fixed point does not entail the usual scale invariance, thereby identifying the mechanism for the emergence of intermittency within the NPRG framework. The purpose of this work is to provide a detailed basis for NPRG studies of NS turbulence; the determination of the ensuing intermittency exponents is left for future work.
Collapse
Affiliation(s)
- Léonie Canet
- LPMMC, Université Joseph Fourier Grenoble-Alpes, CNRS UMR 5493, 38042 Grenoble Cedex, France
| | - Bertrand Delamotte
- LPTMC, CNRS UMR 7600, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | - Nicolás Wschebor
- LPTMC, CNRS UMR 7600, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France.,Instituto de Física, Facultad de Ingeniería, Universidad de la República, J.H.y Reissig 565, 11000 Montevideo, Uruguay
| |
Collapse
|