1
|
Scher Y, Kumar A, Santhanam MS, Reuveni S. Continuous gated first-passage processes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:108101. [PMID: 39208840 DOI: 10.1088/1361-6633/ad7530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gated first-passage processes, where completion depends on both hitting a target and satisfying additional constraints, are prevalent across various fields. Despite their significance, analytical solutions to basic problems remain unknown, e.g. the detection time of a diffusing particle by a gated interval, disk, or sphere. In this paper, we elucidate the challenges posed by continuous gated first-passage processes and present a renewal framework to overcome them. This framework offers a unified approach for a wide range of problems, including those with single-point, half-line, and interval targets. The latter have so far evaded exact solutions. Our analysis reveals that solutions to gated problems can be obtained directly from the ungated dynamics. This, in turn, reveals universal properties and asymptotic behaviors, shedding light on cryptic intermediate-time regimes and refining the notion of high-crypticity for continuous-space gated processes. Moreover, we extend our formalism to higher dimensions, showcasing its versatility and applicability. Overall, this work provides valuable insights into the dynamics of continuous gated first-passage processes and offers analytical tools for studying them across diverse domains.
Collapse
Affiliation(s)
- Yuval Scher
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular & Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Aanjaneya Kumar
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India
| | - M S Santhanam
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India
| | - Shlomi Reuveni
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular & Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
2
|
Pál G, Danku Z, Batool A, Kádár V, Yoshioka N, Ito N, Ódor G, Kun F. Scaling laws of failure dynamics on complex networks. Sci Rep 2023; 13:19733. [PMID: 37957302 PMCID: PMC10643452 DOI: 10.1038/s41598-023-47152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
The topology of the network of load transmitting connections plays an essential role in the cascading failure dynamics of complex systems driven by the redistribution of load after local breakdown events. In particular, as the network structure is gradually tuned from regular to completely random a transition occurs from the localized to mean field behavior of failure spreading. Based on finite size scaling in the fiber bundle model of failure phenomena, here we demonstrate that outside the localized regime, the load bearing capacity and damage tolerance on the macro-scale, and the statistics of clusters of failed nodes on the micro-scale obey scaling laws with exponents which depend on the topology of the load transmission network and on the degree of disorder of the strength of nodes. Most notably, we show that the spatial structure of damage governs the emergence of the localized to mean field transition: as the network gets gradually randomized failed clusters formed on locally regular patches merge through long range links generating a percolation like transition which reduces the load concentration on the network. The results may help to design network structures with an improved robustness against cascading failure.
Collapse
Affiliation(s)
- Gergő Pál
- Department of Theoretical Physics, Faculty of Science and Technology, Doctoral School of Physics, University of Debrecen, P.O.Box: 400, Debrecen, H-4002, Hungary
| | - Zsuzsa Danku
- Department of Theoretical Physics, Faculty of Science and Technology, Doctoral School of Physics, University of Debrecen, P.O.Box: 400, Debrecen, H-4002, Hungary
| | - Attia Batool
- Department of Theoretical Physics, Faculty of Science and Technology, Doctoral School of Physics, University of Debrecen, P.O.Box: 400, Debrecen, H-4002, Hungary
| | - Viktória Kádár
- Department of Theoretical Physics, Faculty of Science and Technology, Doctoral School of Physics, University of Debrecen, P.O.Box: 400, Debrecen, H-4002, Hungary
| | - Naoki Yoshioka
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Nobuyasu Ito
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Géza Ódor
- Centre for Energy Research, Institute of Technical Physics and Materials Science, P.O. Box 49, H-1525, Budapest, Hungary
| | - Ferenc Kun
- Department of Theoretical Physics, Faculty of Science and Technology, Doctoral School of Physics, University of Debrecen, P.O.Box: 400, Debrecen, H-4002, Hungary.
- Institute for Nuclear Research (Atomki), P.O. Box 51, Debrecen, H-4001, Hungary.
| |
Collapse
|
3
|
Batool A, Danku Z, Pál G, Kun F. Temporal evolution of failure avalanches of the fiber bundle model on complex networks. CHAOS (WOODBURY, N.Y.) 2022; 32:063121. [PMID: 35778115 DOI: 10.1063/5.0089634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
We investigate how the interplay of the topology of the network of load transmitting connections and the amount of disorder of the strength of the connected elements determines the temporal evolution of failure cascades driven by the redistribution of load following local failure events. We use the fiber bundle model of materials' breakdown assigning fibers to the sites of a square lattice, which is then randomly rewired using the Watts-Strogatz technique. Gradually increasing the rewiring probability, we demonstrate that the bundle undergoes a transition from the localized to the mean field universality class of breakdown phenomena. Computer simulations revealed that both the size and the duration of failure cascades are power law distributed on all network topologies with a crossover between two regimes of different exponents. The temporal evolution of cascades is described by a parabolic profile with a right handed asymmetry, which implies that cascades start slowly, then accelerate, and eventually stop suddenly. The degree of asymmetry proved to be characteristic of the network topology gradually decreasing with increasing rewiring probability. Reducing the variance of fibers' strength, the exponents of the size and the duration distribution of cascades increase in the localized regime of the failure process, while the localized to mean field transition becomes more abrupt. The consistency of the results is supported by a scaling analysis relating the characteristic exponents of the statistics and dynamics of cascades.
Collapse
Affiliation(s)
- Attia Batool
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Zsuzsa Danku
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gergő Pál
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Ferenc Kun
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| |
Collapse
|
4
|
Kelly G, Fai TG. Multi-scale model of clogging in microfluidic devices with grid-like geometries. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We propose a coarse-grained theoretical model to capture the ageing of microfluidic devices under different conditions including constant applied flow rate and constant applied pressure gradient. Microfluidic devices that sort cells by their deformability hold significant promise for medical applications. However, clogging in these microfluidic systems causes their properties to change over time and potentially limits their reliability. We compare the results of the coarse-grained model with those of stochastic simulations and with existing theoretical studies. Lastly, we apply the model to experimental data on the clogging of sickle red blood cells and discuss its wider applicability.
Collapse
Affiliation(s)
- Gess Kelly
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Thomas G. Fai
- Mathematics Department and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
5
|
Barré C, Page G, Talbot J, Viot P. Recurrence dynamics of particulate transport with reversible blockage: From a single channel to a bundle of coupled channels. Phys Rev E 2019; 99:042119. [PMID: 31108653 DOI: 10.1103/physreve.99.042119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 11/07/2022]
Abstract
We model a particulate flow of constant velocity through confined geometries, ranging from a single channel to a bundle of N_{c} identical coupled channels, under conditions of reversible blockage. Quantities of interest include the exiting particle flux (or throughput) and the probability that the bundle is open. For a constant entering flux, the bundle evolves through a transient regime to a steady state. We present analytic solutions for the stationary properties of a single channel with capacity N≤3 and for a bundle of channels each of capacity N=1. For larger values of N and N_{c}, the system's steady state behavior is explored by numerical simulation. Depending on the deblocking time, the exiting flux either increases monotonically with intensity or displays a maximum at a finite intensity. For large N we observe an abrupt change from a state with few blockages to one in which the bundle is permanently blocked and the exiting flux is due entirely to the release of blocked particles. We also compare the relative efficiency of coupled and uncoupled bundles. For N=1 the coupled system is always more efficient, but for N>1 the behavior is more complex.
Collapse
Affiliation(s)
- Chloé Barré
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4 place Jussieu, 75005 Paris Cedex 05, France
| | - Gregory Page
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4 place Jussieu, 75005 Paris Cedex 05, France
| | - Julian Talbot
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4 place Jussieu, 75005 Paris Cedex 05, France
| | - Pascal Viot
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4 place Jussieu, 75005 Paris Cedex 05, France
| |
Collapse
|
6
|
Barré C, Page G, Talbot J, Viot P. Stochastic models of multi-channel particulate transport with blockage. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:304004. [PMID: 29923835 DOI: 10.1088/1361-648x/aacdd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Particle conveying channels may be bundled together. The limited carrying capacity of the constituent channels may cause the bundle to be subject to blockages. If coupled, the blockage of one channel causes an increase in the flux entering the others, leading to a cascade of failures. Once all the channels are blocked, no additional particles may enter the system. If the blockages are of finite duration, the system reaches a steady state with an exiting flux that is reduced compared to the incoming one. We propose a stochastic model consisting of N c channels, each with a blocking threshold of N particles. Particles enter the system's open channels according to a Poisson process, with an equally distributed input flux of intensity Λ. In an open channel the leading particle exits at a rate μ and a blocked channel unblocks at a rate [Formula: see text], where [Formula: see text]. We present and explain the methodology of an analytical description of the behavior of bundled channels. This leads to exact expressions for the steady-state output flux, for [Formula: see text], which promises to extend to arbitrary N c and N. The results are applied to compare the efficiency of conveying a particulate stream of intensity Λ using a single, high capacity (HC) channel with multiple channels of a proportionately reduced low capacity (LC). The HC channel is more efficient at low input intensities, while the multiple LC channels have a higher throughput at high intensities. We also compare [Formula: see text] coupled channels, each of capacity N = 2 with the corresponding number of independent channels of the same capacity. For [Formula: see text], if [Formula: see text], the coupled channels are always more efficient. Otherwise the independent channels are more efficient for sufficiently large Λ.
Collapse
Affiliation(s)
- Chloé Barré
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | |
Collapse
|
7
|
Cecconi F, Puglisi A, Sarracino A, Vulpiani A. Anomalous mobility of a driven active particle in a steady laminar flow. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:264002. [PMID: 29762125 DOI: 10.1088/1361-648x/aac4f0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study, via extensive numerical simulations, the force-velocity curve of an active particle advected by a steady laminar flow, in the nonlinear response regime. Our model for an active particle relies on a colored noise term that mimics its persistent motion over a time scale [Formula: see text]. We find that the active particle dynamics shows non-trivial effects, such as negative differential and absolute mobility (NDM and ANM, respectively). We explore the space of the model parameters and compare the observed behaviors with those obtained for a passive particle ([Formula: see text]) advected by the same laminar flow. Our results show that the phenomena of NDM and ANM are quite robust with respect to the details of the considered noise: in particular for finite [Formula: see text] a more complex force-velocity relation can be observed.
Collapse
Affiliation(s)
- F Cecconi
- CNR-ISC and Dipartimento di Fisica, Sapienza Università di Roma, p.le A. Moro 2, 00185 Roma, Italy
| | | | | | | |
Collapse
|
8
|
Reichhardt CJO, Reichhardt C. Clogging and transport of driven particles in asymmetric funnel arrays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:244005. [PMID: 29722678 DOI: 10.1088/1361-648x/aac247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrant pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth 1D flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. The clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.
Collapse
Affiliation(s)
- C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | | |
Collapse
|