1
|
de Mello M, Díaz-Méndez R, Mendoza-Coto A. Ultrasoft Classical Systems at Zero Temperature. ENTROPY (BASEL, SWITZERLAND) 2023; 25:356. [PMID: 36832722 PMCID: PMC9955825 DOI: 10.3390/e25020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
At low temperatures, classical ultrasoft particle systems develop interesting phases via the self-assembly of particle clusters. In this study, we reach analytical expressions for the energy and the density interval of the coexistence regions for general ultrasoft pairwise potentials at zero temperatures. We use an expansion in the inverse of the number of particles per cluster for an accurate determination of the different quantities of interest. Differently from previous works, we study the ground state of such models, in two and three dimensions, considering an integer cluster occupancy number. The resulting expressions were successfully tested in the small and large density regimes for the Generalized Exponential Model α, varying the value of the exponent.
Collapse
Affiliation(s)
- Matheus de Mello
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Rogelio Díaz-Méndez
- Ericsson BA Cloud Software, R&D DSS, Ericsson Building 8, 16440 Kista, Sweden
| | - Alejandro Mendoza-Coto
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
| |
Collapse
|
2
|
Mambretti F, Martinelli M, Civillini F, Bertoletti M, Riva S, Manini N, Galli DE, Pini D. Low-temperature ordering of the dimer phase of a two-dimensional model of core-softened particles. Phys Rev E 2021; 104:044602. [PMID: 34781531 DOI: 10.1103/physreve.104.044602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Purely pairwise interactions of the core-softened type, i.e., featuring a soft repulsion followed by a hard-core interaction at shorter distance, give rise to nontrivial equilibrium structures entirely different from the standard close packing of spheres. In particular, in a suitable low-temperature region of their phase diagram, such interactions are well known to favor a transition from a fluid to a cluster crystal. The residual mutual interaction between individual clusters can lead to the formation of patterns of their reciprocal orientations. In this work, we investigate two examples of such models in two dimensions, at the density most appropriate to the dimer phase, whereby clusters consist of just two particles, studying them with optimization techniques and Monte Carlo simulations. We focus on the dimer crystal, and unveil a second phase transition at extremely low temperature. This transition leads from a triangular dimer lattice with randomly disordered dimer orientations at high temperature to a reduced-symmetry ground state with nematic orientational order and a slightly distorted structure characterized by a centered-rectangular lattice at low temperature.
Collapse
Affiliation(s)
- F Mambretti
- Università degli Studi di Milano, Dipartimento di Fisica "Aldo Pontremoli," via Celoria 16, 20133 Milan, Italy.,Università degli Studi di Padova, Dipartimento di Fisica e Astronomia, via Marzolo 8, 35131 Padua, Italy
| | - M Martinelli
- Università degli Studi di Milano, Dipartimento di Fisica "Aldo Pontremoli," via Celoria 16, 20133 Milan, Italy
| | - F Civillini
- Università degli Studi di Milano, Dipartimento di Fisica "Aldo Pontremoli," via Celoria 16, 20133 Milan, Italy
| | - M Bertoletti
- Università degli Studi di Milano, Dipartimento di Fisica "Aldo Pontremoli," via Celoria 16, 20133 Milan, Italy
| | - S Riva
- Università degli Studi di Milano, Dipartimento di Fisica "Aldo Pontremoli," via Celoria 16, 20133 Milan, Italy
| | - N Manini
- Università degli Studi di Milano, Dipartimento di Fisica "Aldo Pontremoli," via Celoria 16, 20133 Milan, Italy
| | - D E Galli
- Università degli Studi di Milano, Dipartimento di Fisica "Aldo Pontremoli," via Celoria 16, 20133 Milan, Italy
| | - D Pini
- Università degli Studi di Milano, Dipartimento di Fisica "Aldo Pontremoli," via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
3
|
Mendoza-Coto A, Cenci R, Pupillo G, Díaz-Méndez R, Babaev E. Cluster self-assembly condition for arbitrary interaction potentials. SOFT MATTER 2021; 17:915-923. [PMID: 33245086 DOI: 10.1039/d0sm00650e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a sufficient criterion for the emergence of cluster phases in an ensemble of interacting classical particles with repulsive two-body interactions. Through a zero-temperature analysis in the low density region we determine the relevant characteristics of the interaction potential that make the energy of a two-particle cluster-crystal become smaller than that of a simple triangular lattice in two dimensions. The method leads to a mathematical condition for the emergence of cluster crystals in terms of the sum of Fourier components of a regularized interaction potential, which can be in principle applied to any arbitrary shape of interactions. We apply the formalism to several examples of bounded and unbounded potentials with and without cluster-forming ability. In all cases, the emergence of self-assembled cluster crystals is well captured by the presented analytic criterion and verified with known results from molecular dynamics simulations at vanishingly temperatures. Our work generalises known results for bounded potentials to repulsive potentials of arbitrary shape.
Collapse
Affiliation(s)
- Alejandro Mendoza-Coto
- Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil.
| | | | | | | | | |
Collapse
|
4
|
Thermal and Quantum Fluctuation Effects in Quasiperiodic Systems in External Potentials. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4040093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We analyze the many-body phases of an ensemble of particles interacting via a Lifshitz–Petrich–Gaussian pair potential in a harmonic confinement. We focus on specific parameter regimes where we expect decagonal quasiperiodic cluster arrangements. Performing classical Monte Carlo as well as path integral quantum Monte Carlo methods, we numerically simulate systems of a few thousand particles including thermal and quantum fluctuations. Our findings indicate that the competition between the intrinsic length scale of the harmonic oscillator and the wavelengths associated to the minima of the pair potential generically lead to a destruction of the quasicrystalline pattern. Extensions of this work are also discussed.
Collapse
|
5
|
Caprini L, Hernández-García E, López C, Marini Bettolo Marconi U. A comparative study between two models of active cluster crystals. Sci Rep 2019; 9:16687. [PMID: 31723160 PMCID: PMC6853940 DOI: 10.1038/s41598-019-52420-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
We study a system of active particles with soft repulsive interactions that lead to an active cluster-crystal phase in two dimensions. We use two different modelizations of the active force - Active Brownian particles (ABP) and Ornstein-Uhlenbeck particles (AOUP) - and focus on analogies and differences between them. We study the different phases appearing in the system, in particular, the formation of ordered patterns drifting in space without being altered. We develop an effective description which captures some properties of the stable clusters for both ABP and AOUP. As an additional point, we confine such a system in a large channel, in order to study the interplay between the cluster crystal phase and the well-known accumulation near the walls, a phenomenology typical of active particles. For small activities, we find clusters attached to the walls and deformed, while for large values of the active force they collapse in stripes parallel to the walls.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100, L'Aquila, Italy.
| | - Emilio Hernández-García
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | - Cristóbal López
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | | |
Collapse
|
6
|
Wang W, Díaz-Méndez R, Wallin M, Lidmar J, Babaev E. Melting of a two-dimensional monodisperse cluster crystal to a cluster liquid. Phys Rev E 2019; 99:042140. [PMID: 31108717 DOI: 10.1103/physreve.99.042140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/07/2022]
Abstract
Monodisperse ensembles of particles that have cluster crystalline phases at low temperatures can model a number of physical systems, such as vortices in type-1.5 superconductors, colloidal suspensions, and cold atoms. In this work, we study a two-dimensional cluster-forming particle system interacting via an ultrasoft potential. We present a simple mean-field characterization of the cluster-crystal ground state, corroborating with Monte Carlo simulations for a wide range of densities. The efficiency of several Monte Carlo algorithms is compared, and the challenges of thermal equilibrium sampling are identified. We demonstrate that the liquid to cluster-crystal phase transition is of first order and occurs in a single step, and the liquid phase is a cluster liquid.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Rogelio Díaz-Méndez
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Mats Wallin
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Jack Lidmar
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Egor Babaev
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| |
Collapse
|
7
|
Miyazaki R, Kawasaki T, Miyazaki K. Slow dynamics coupled with cluster formation in ultrasoft-potential glasses. J Chem Phys 2019; 150:074503. [PMID: 30795681 DOI: 10.1063/1.5086379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We numerically investigate the slow dynamics of a binary mixture of ultrasoft particles interacting with the generalized Hertzian potential. If the softness parameter, α, is small, the particles at high densities start penetrating each other, form clusters, and eventually undergo the glass transition. We find multiple cluster-glass phases characterized by a different number of particles per cluster, whose boundary lines are sharply separated by the cluster size. Anomalous logarithmic slow relaxation of the density correlation functions is observed in the vicinity of these glass-glass phase boundaries, which hints the existence of the higher-order dynamical singularities predicted by the mode-coupling theory. Deeply in the cluster glass phases, it is found that the dynamics of a single particle is decoupled from that of the collective fluctuations.
Collapse
|
8
|
Abstract
Crystallization is a generic phenomenon in classical and quantum mechanics arising in a variety of physical systems. In this work, we focus on a specific platform, ultracold dipolar bosons, which can be realized in experiments with dilute gases. We reviewed the relevant ingredients leading to crystallization, namely the interplay of contact and dipole–dipole interactions and system density, as well as the numerical algorithm employed. We characterized the many-body phases investigating correlations and superfluidity.
Collapse
|
9
|
Díaz-Méndez R, Pupillo G, Mezzacapo F, Wallin M, Lidmar J, Babaev E. Phase-change switching in 2D via soft interactions. SOFT MATTER 2019; 15:355-358. [PMID: 30556570 DOI: 10.1039/c8sm01738g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a new type of phase-change behavior relevant for information storage applications, that can be observed in 2D systems with cluster-forming ability. The temperature-based control of the ordering in 2D particle systems depends on the existence of a crystal-to-glass transition. We perform molecular dynamics simulations of models with soft interactions, demonstrating that the crystalline and amorphous structures can be easily tuned by heat pulses. The physical mechanism responsible for this behavior is a self-assembled polydispersity, that depends on the cluster-forming ability of the interactions. Therefore, the range of real materials that can perform such a transition is very wide in nature, ranging from colloidal suspensions to vortex matter. The state of the art in soft matter experimental setups, controlling interactions, polydispersity and dimensionality, makes it a very fertile ground for practical applications.
Collapse
Affiliation(s)
- Rogelio Díaz-Méndez
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Guido Pupillo
- icFRC, ISIS (UMR 7006), IPCMS (UMR 7504), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - Fabio Mezzacapo
- Laboratoire de Physique, CNRS UMR 5672, ENS de Lyon, F-69364 Lyon Cedex 07, France
| | - Mats Wallin
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Jack Lidmar
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Egor Babaev
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
10
|
Rossini M, Consonni L, Stenco A, Reatto L, Manini N. Sliding states of a soft-colloid cluster crystal: Cluster versus single-particle hopping. Phys Rev E 2018; 97:052614. [PMID: 29906835 DOI: 10.1103/physreve.97.052614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 06/08/2023]
Abstract
We study a two-dimensional model for interacting colloidal particles which displays spontaneous clustering. Within this model we investigate the competition between the pinning to a periodic corrugation potential and a sideways constant pulling force which would promote a sliding state. For a few sample particle densities and amplitudes of the periodic corrugation potential we investigate the depinning from the statically pinned to the dynamically sliding regime. This sliding state exhibits the competition between a dynamics where entire clusters are pulled from a minimum to the next and a dynamics where single colloids or smaller groups leave a cluster and move across the corrugation energy barrier to join the next cluster downstream in the force direction. Both kinds of sliding states can occur either coherently across the entire sample or asynchronously: the two regimes result in different average mobilities. Finite temperature tends to destroy separate sliding regimes, generating a smoother dependence of the mobility on the driving force.
Collapse
Affiliation(s)
- Mirko Rossini
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Lorenzo Consonni
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Andrea Stenco
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Luciano Reatto
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Nicola Manini
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| |
Collapse
|
11
|
Díaz-Méndez R, Mezzacapo F, Lechner W, Cinti F, Babaev E, Pupillo G. Glass Transitions in Monodisperse Cluster-Forming Ensembles: Vortex Matter in Type-1.5 Superconductors. PHYSICAL REVIEW LETTERS 2017; 118:067001. [PMID: 28234534 DOI: 10.1103/physrevlett.118.067001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 06/06/2023]
Abstract
At low enough temperatures and high densities, the equilibrium configuration of an ensemble of ultrasoft particles is a self-assembled, ordered, cluster crystal. In the present Letter, we explore the out-of-equilibrium dynamics for a two-dimensional realization, which is relevant to superconducting materials with multiscale intervortex forces. We find that, for small temperatures following a quench, the suppression of the thermally activated particle hopping hinders the ordering. This results in a glass transition for a monodispersed ensemble, for which we derive a microscopic explanation in terms of an "effective polydispersity" induced by multiscale interactions. This demonstrates that a vortex glass can form in clean systems of thin films of "type-1.5" superconductors. An additional setup to study this physics can be layered superconducting systems, where the shape of the effective vortex-vortex interactions can be engineered.
Collapse
Affiliation(s)
- Rogelio Díaz-Méndez
- icFRC, IPCMS (UMR 7504), ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - Fabio Mezzacapo
- icFRC, IPCMS (UMR 7504), ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - Wolfgang Lechner
- IQOQI and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Fabio Cinti
- National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa
- Institute of Theoretical Physics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Egor Babaev
- Department of Theoretical Physics and Center for Quantum Materials, KTH-Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Guido Pupillo
- icFRC, IPCMS (UMR 7504), ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| |
Collapse
|
12
|
Miyazaki R, Kawasaki T, Miyazaki K. Cluster Glass Transition of Ultrasoft-Potential Fluids at High Density. PHYSICAL REVIEW LETTERS 2016; 117:165701. [PMID: 27792362 DOI: 10.1103/physrevlett.117.165701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 06/06/2023]
Abstract
Using molecular dynamics simulation, we investigate the slow dynamics of a supercooled binary mixture of soft particles interacting with a generalized Hertzian potential. At low density, it displays typical slow dynamics near its glass transition temperature. At higher densities, particles bond together, forming clusters, and the clusters undergo the glass transition. The number of particles in a cluster increases one by one as the density increases. We demonstrate that there exist multiple cluster-glass phases characterized by a different number of particles per cluster, each of which is separated by distinct minima. Surprisingly, a so-called higher order singularity of the mode-coupling theory signaled by a logarithmic relaxation is observed in the vicinity of the boundaries between monomer and cluster glass phases. The system also exhibits rich and anomalous dynamics in the cluster glass phases, such as the decoupling of the self- and collective dynamics.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|
13
|
Angelone A, Mezzacapo F, Pupillo G. Superglass Phase of Interaction-Blockaded Gases on a Triangular Lattice. PHYSICAL REVIEW LETTERS 2016; 116:135303. [PMID: 27081986 DOI: 10.1103/physrevlett.116.135303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 06/05/2023]
Abstract
We investigate the quantum phases of monodispersed bosonic gases confined to a triangular lattice and interacting via a class of soft-shoulder potentials. The latter correspond to soft-core potentials with an additional hard-core onsite interaction. Using exact quantum Monte Carlo simulations, we show that the low temperature phases for weak and strong interactions following a temperature quench are a homogeneous superfluid and a glass, respectively. The latter is an insulating phase characterized by inhomogeneity in the density distribution and structural disorder. Remarkably, we find that for intermediate interaction strengths a superglass occurs in an extended region of the phase diagram, where glassy behavior coexists with a sizable finite superfluid fraction. This glass phase is obtained in the absence of geometrical frustration or external disorder and is a result of the competition of quantum fluctuations and cluster formation in the corresponding classical ground state. For high enough temperature, the glass and superglass turn into a floating stripe solid and a supersolid, respectively. Given the simplicity and generality of the model, these phases should be directly relevant for state-of-the-art experiments with Rydberg-dressed atoms in optical lattices.
Collapse
Affiliation(s)
- Adriano Angelone
- icFRC, IPCMS (UMR 7504) and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - Fabio Mezzacapo
- icFRC, IPCMS (UMR 7504) and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - Guido Pupillo
- icFRC, IPCMS (UMR 7504) and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| |
Collapse
|