1
|
Yin R, Teng Q, Wu X, Zhang F, Xiong S. Three-dimensional reconstruction of granular porous media based on deep generative models. Phys Rev E 2023; 108:055303. [PMID: 38115524 DOI: 10.1103/physreve.108.055303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
Reconstruction of microstructure in granular porous media, which can be viewed as granular assemblies, is crucial for studying their characteristics and physical properties in various fields concerned with the behavior of such media, including petroleum geology and computational materials science. In spite of the fact that many existing studies have investigated grain reconstruction, most of them treat grains as simplified individuals for discrete reconstruction, which cannot replicate the complex geometrical shapes and natural interactions between grains. In this work, a hybrid generative model based on a deep-learning algorithm is proposed for high-quality three-dimensional (3D) microstructure reconstruction of granular porous media from a single two-dimensional (2D) slice image. The method extracts 2D prior information from the given image and generates the grain set as a whole. Both a self-attention module and effective pattern loss are introduced in a bid to enhance the reconstruction ability of the model. Samples with grains of varied geometrical shapes are utilized for the validation of our method, and experimental results demonstrate that our proposed approach can accurately reproduce the complex morphology and spatial distribution of grains without any artificiality. Furthermore, once the model training is complete, rapid end-to-end generation of diverse 3D realizations from a single 2D image can be achieved.
Collapse
Affiliation(s)
- Rongyan Yin
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Qizhi Teng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohong Wu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Fan Zhang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Shuhua Xiong
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Xia Z, Teng Q, Wu X, Li J, Yan P. Three-dimensional reconstruction of porous media using super-dimension-based adjacent block-matching algorithm. Phys Rev E 2021; 104:045308. [PMID: 34781580 DOI: 10.1103/physreve.104.045308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/30/2021] [Indexed: 11/07/2022]
Abstract
As porous media play an essential role in a variety of industrial applications, it is essential to understand their physical properties. Nowadays, the super-dimensional (SD) reconstruction algorithm is used to stochastically reconstruct a three-dimensional (3D) structure of porous media from a given two-dimensional image. This algorithm exhibits superiority in accuracy compared with classical algorithms because it learns information from the real 3D structure. However, owing to the short development time of the SD algorithm, it also has some limitations, such as inexact porosity characterization, long run time, blocking artifacts, and suboptimal accuracy that may be improved. To mitigate these limitations, this study presents the design of a special template that contains two parts of data (i.e., adjacent blocks and a central block); the proposed method matches adjacent blocks during reconstruction and assigns the matched central block to the area to be reconstructed. Furthermore, we design two important mechanisms during reconstruction: one for block matching and the other for porosity control. To verify the effectiveness of the proposed method compared with an existing SD method, both methods were tested on silica particle material and three homogeneous sandstones with different porosities; meanwhile, we compared the proposed method with a multipoint statistics method and a simulated annealing method. The reconstructed results were then compared with the target both visually and quantitatively. The experimental results indicate that the proposed method can overcome the aforementioned limitations and further improve the accuracy of existing methods. This method achieved 4-6 speedup factor compared with the traditional SD method.
Collapse
Affiliation(s)
- Zhixin Xia
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Qizhi Teng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohong Wu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Juan Li
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Pengcheng Yan
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Li X, Teng Q, Zhang Y, Xiong S, Feng J. Three-dimensional multiscale fusion for porous media on microtomography images of different resolutions. Phys Rev E 2020; 101:053308. [PMID: 32575196 DOI: 10.1103/physreve.101.053308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022]
Abstract
Accurately acquiring the three-dimensional (3D) image of a porous medium is an imperative issue for the prediction of multiple physical properties. Considering the inherent nature of the multiscale pores contained in porous media such as tight sandstones, to completely characterize the pore structure, one needs to scan the microstructure at different resolutions. Specifically, low-resolution (LR) images cover a larger field of view (FOV) of the sample, but are lacking small-scale features, whereas high-resolution (HR) images contain ample information, but sometimes only cover a limited FOV. To address this issue, we propose a method for fusing the spatial information from a two-dimensional (2D) HR image into a 3D LR image, and finally reconstructing an integrated 3D structure with added fine-scale features. In the fusion process, the large-scale structure depicted by the 3D LR image is fixed as background and the 2D image is utilized as training image to reconstruct a small-scale structure based on the background. To assess the performance of our method, we test it on a sandstone scanned with low and high resolutions. Statistical properties between the reconstructed image and the target are quantitatively compared. The comparison indicates that the proposed method enables an accurate fusion of the LR and HR images because the small-scale information is precisely reproduced within the large one.
Collapse
Affiliation(s)
- Xuan Li
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Qizhi Teng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Wireless Power Transmission of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yonghao Zhang
- Technique center of CNPC Logging Ltd., Xi'an 710077, China.,Well Logging Key Laboratory, CNPC, Xi'an 710077, China
| | - Shuhua Xiong
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Wireless Power Transmission of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Junxi Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Feng J, He X, Teng Q, Ren C, Chen H, Li Y. Reconstruction of porous media from extremely limited information using conditional generative adversarial networks. Phys Rev E 2019; 100:033308. [PMID: 31639909 DOI: 10.1103/physreve.100.033308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 06/10/2023]
Abstract
Porous media are ubiquitous in both nature and engineering applications. Therefore, their modeling and understanding is of vital importance. In contrast to direct acquisition of three-dimensional (3D) images of this type of medium, obtaining its subregion (s) such as 2D images or several small areas can be feasible. Therefore, reconstructing whole images from limited information is a primary technique in these types of cases. Given data in practice cannot generally be determined by users and may be incomplete or only partially informed, thus making existing reconstruction methods inaccurate or even ineffective. To overcome this shortcoming, in this study we propose a deep-learning-based framework for reconstructing full images from their much smaller subareas. In particular, conditional generative adversarial network is utilized to learn the mapping between the input (a partial image) and output (a full image). To ensure the reconstruction accuracy, two simple but effective objective functions are proposed and then coupled with the other two functions to jointly constrain the training procedure. Because of the inherent essence of this ill-posed problem, a Gaussian noise is introduced for producing reconstruction diversity, thus enabling the network to provide multiple candidate outputs. Our method is extensively tested on a variety of porous materials and validated by both visual inspection and quantitative comparison. It is shown to be accurate, stable, and even fast (∼0.08 s for a 128×128 image reconstruction). The proposed approach can be readily extended by, for example, incorporating user-defined conditional data and an arbitrary number of object functions into reconstruction, while being coupled with other reconstruction methods.
Collapse
Affiliation(s)
- Junxi Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohai He
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Wireless Power Transmission of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Qizhi Teng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Wireless Power Transmission of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chao Ren
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Wireless Power Transmission of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Honggang Chen
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Li
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Zuo C, Pan Z, Gao Z, Gao J. Correlation-driven direct sampling method for geostatistical simulation and training image evaluation. Phys Rev E 2019; 99:053310. [PMID: 31212572 DOI: 10.1103/physreve.99.053310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Multiple-point geostatistics (MPS) is a competitive algorithm that produces a set of geologically realistic models. Viewing a training image (TI) as a prior model, MPS extracts patterns from the TI and reproduces patterns which are compatible with the hard data (HD). However, two challenges within the MPS framework are the geologically complex simulation and the TI evaluation. With the objective to achieve a high-quality simulation, we explore a way to address these two issues. First, correlation-driven direct sampling (CDS) is proposed to realize geostatistical simulation. We introduce the correlation-driven distance as a measure of similarity between two patterns. The weights in our distance measurement are derived by the concepts of the ellipse, correlation coefficient, Gaussian function, and affine transformation. Second, we fulfill TI evaluation on the basis of the consistency between TI and HD. Inspired by CDS, the minimum correlation-driven distance (MCD) is proposed to improve the evaluation accuracy. We suggest a conditioning pattern extraction history strategy to speed up the evaluation program. Third, the local consistency is presented to address nonstationarity. The program automatically divides the simulation domain into several subareas. A two-dimensional (2D) channelized reservoir image and a three-dimensional (3D) rock image are used to validate our proposed method. In comparison with previous methods, CDS yields better simulation quality. The further applications include a set of 2D TI evaluations and a 3D simulation domain segmentation. MCD exhibits sensible evaluation accuracy, excellent computational efficiency, and the ability to deal with nonstationarity.
Collapse
Affiliation(s)
- Chen Zuo
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhibin Pan
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaoqi Gao
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinghuai Gao
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Ding K, Teng Q, Wang Z, He X, Feng J. Improved multipoint statistics method for reconstructing three-dimensional porous media from a two-dimensional image via porosity matching. Phys Rev E 2018; 97:063304. [PMID: 30011558 DOI: 10.1103/physreve.97.063304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 11/07/2022]
Abstract
Reconstructing a three-dimensional (3D) structure from a single two-dimensional training image (TI) is a challenging issue. Multiple-point statistics (MPS) is an effective method to solve this problem. However, in the traditional MPS method, errors occur while statistical features of reconstruction, such as porosity, connectivity, and structural properties, deviate from those of TI. Due to the MPS reconstruction mechanism that the voxel being reconstructed is dependent on the reconstructed voxel, it may cause error accumulation during simulations, which can easily lead to a significant difference between the real 3D structure and the reconstructed result. To reduce error accumulation and improve morphological similarity, an improved MPS method based on porosity matching is proposed. In the reconstruction, we search the matching pattern in the TI directly. Meanwhile, a multigrid approach is also applied to capture the large-scale structures of the TI. To demonstrate its superiority over the traditional MPS method, our method is tested on different sandstone samples from many aspects, including accuracy, stability, generalization, and flow characteristics. Experimental results show that the reconstruction results by the improved MPS method effectively match the CT sandstone samples in correlation functions, local porosity distribution, morphological parameters, and permeability.
Collapse
Affiliation(s)
- Kai Ding
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Qizhi Teng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengyong Wang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohai He
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Junxi Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Abstract
Chemical reactor modelling based on insights and data on a molecular level has become reality over the last few years. Multiscale models describing elementary reaction steps and full microkinetic schemes, pore structures, multicomponent adsorption and diffusion inside pores, and entire reactors have been presented. Quantum mechanical (QM) approaches, molecular simulations (Monte Carlo and molecular dynamics), and continuum equations have been employed for this purpose. Some recent developments in these approaches are presented, in particular time-dependent QM methods, calculation of van der Waals forces, new approaches for force field generation, automatic setup of reaction schemes, and pore modelling. Multiscale simulations are discussed. Applications of these approaches to heterogeneous catalysis are demonstrated for examples that have found growing interest over the last few years, such as metal-support interactions, influence of pore geometry on reactions, noncovalent bonding, reaction dynamics, dynamic changes in catalyst nanoparticle structure, electrocatalysis, solvent effects in catalysis, and multiscale modelling.
Collapse
Affiliation(s)
- Frerich J. Keil
- Department of Chemical Engineering, Hamburg University of Technology, D-21073 Hamburg, Germany
| |
Collapse
|
8
|
Li Y, He X, Teng Q, Feng J, Wu X. Markov prior-based block-matching algorithm for superdimension reconstruction of porous media. Phys Rev E 2018; 97:043306. [PMID: 29758612 DOI: 10.1103/physreve.97.043306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 06/08/2023]
Abstract
A superdimension reconstruction algorithm is used for the reconstruction of three-dimensional (3D) structures of a porous medium based on a single two-dimensional image. The algorithm borrows the concepts of "blocks," "learning," and "dictionary" from learning-based superresolution reconstruction and applies them to the 3D reconstruction of a porous medium. In the neighborhood-matching process of the conventional superdimension reconstruction algorithm, the Euclidean distance is used as a criterion, although it may not really reflect the structural correlation between adjacent blocks in an actual situation. Hence, in this study, regular items are adopted as prior knowledge in the reconstruction process, and a Markov prior-based block-matching algorithm for superdimension reconstruction is developed for more accurate reconstruction. The algorithm simultaneously takes into consideration the probabilistic relationship between the already reconstructed blocks in three different perpendicular directions (x, y, and z) and the block to be reconstructed, and the maximum value of the probability product of the blocks to be reconstructed (as found in the dictionary for the three directions) is adopted as the basis for the final block selection. Using this approach, the problem of an imprecise spatial structure caused by a point simulation can be overcome. The problem of artifacts in the reconstructed structure is also addressed through the addition of hard data and by neighborhood matching. To verify the improved reconstruction accuracy of the proposed method, the statistical and morphological features of the results from the proposed method and traditional superdimension reconstruction method are compared with those of the target system. The proposed superdimension reconstruction algorithm is confirmed to enable a more accurate reconstruction of the target system while also eliminating artifacts.
Collapse
Affiliation(s)
- Yang Li
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohai He
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Qizhi Teng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Junxi Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohong Wu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Zuo C, Pan Z, Liang H. Accelerating simulation for the multiple-point statistics algorithm using vector quantization. Phys Rev E 2018; 97:033302. [PMID: 29776069 DOI: 10.1103/physreve.97.033302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 06/08/2023]
Abstract
Multiple-point statistics (MPS) is a prominent algorithm to simulate categorical variables based on a sequential simulation procedure. Assuming training images (TIs) as prior conceptual models, MPS extracts patterns from TIs using a template and records their occurrences in a database. However, complex patterns increase the size of the database and require considerable time to retrieve the desired elements. In order to speed up simulation and improve simulation quality over state-of-the-art MPS methods, we propose an accelerating simulation for MPS using vector quantization (VQ), called VQ-MPS. First, a variable representation is presented to make categorical variables applicable for vector quantization. Second, we adopt a tree-structured VQ to compress the database so that stationary simulations are realized. Finally, a transformed template and classified VQ are used to address nonstationarity. A two-dimensional (2D) stationary channelized reservoir image is used to validate the proposed VQ-MPS. In comparison with several existing MPS programs, our method exhibits significantly better performance in terms of computational time, pattern reproductions, and spatial uncertainty. Further demonstrations consist of a 2D four facies simulation, two 2D nonstationary channel simulations, and a three-dimensional (3D) rock simulation. The results reveal that our proposed method is also capable of solving multifacies, nonstationarity, and 3D simulations based on 2D TIs.
Collapse
Affiliation(s)
- Chen Zuo
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhibin Pan
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Liang
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Gao M, Teng Q, He X, Feng J, Han X. Evaluating the morphological completeness of a training image. Phys Rev E 2017; 95:053306. [PMID: 28618511 DOI: 10.1103/physreve.95.053306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/07/2023]
Abstract
Understanding the three-dimensional (3D) stochastic structure of a porous medium is helpful for studying its physical properties. A 3D stochastic structure can be reconstructed from a two-dimensional (2D) training image (TI) using mathematical modeling. In order to predict what specific morphology belonging to a TI can be reconstructed at the 3D orthogonal slices by the method of 3D reconstruction, this paper begins by introducing the concept of orthogonal chords. After analyzing the relationship among TI morphology, orthogonal chords, and the 3D morphology of orthogonal slices, a theory for evaluating the morphological completeness of a TI is proposed for the cases of three orthogonal slices and of two orthogonal slices. The proposed theory is evaluated using four TIs of porous media that represent typical but distinct morphological types. The significance of this theoretical evaluation lies in two aspects: It allows special morphologies, for which the attributes of a TI can be reconstructed at a special orthogonal slice of a 3D structure, to be located and quantified, and it can guide the selection of an appropriate reconstruction method for a special TI.
Collapse
Affiliation(s)
- Mingliang Gao
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
- Northwest University for Nationalities, College of Electrical Engineering, Lanzhou 730030, China
| | - Qizhi Teng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohai He
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Junxi Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xue Han
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|