1
|
Thamizharasan S, Chandrasekar VK, Senthilvelan M, Senthilkumar DV. Stimulus-induced dynamical states in an adaptive network with symmetric adaptation. Phys Rev E 2024; 110:034217. [PMID: 39425440 DOI: 10.1103/physreve.110.034217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/03/2024] [Indexed: 10/21/2024]
Abstract
We consider an adaptive network of identical phase oscillators with the symmetric adaptation rule for the evolution of the connection weights under the influence of an external force. We show that the adaptive network exhibits a plethora of self-organizing dynamical states such as the two-cluster state, multiantipodal clusters, splay cluster, splay chimera, forced entrained state, chimera state, bump state, coherent, and incoherent states in the two-parameter phase diagrams. The intriguing structures of the frequency clusters and instantaneous phases of the oscillators characterize the distinct self-organized synchronized and partial synchronized states. The hierarchical organization of the frequency clusters, resulting in strongly coupled subnetworks, is also evident from the dynamics of the coupling weights, where the frequency clusters are either very weakly coupled or even completely decoupled from each other. Additionally, we also deduce the stability condition for the forced entrained state.
Collapse
|
2
|
Khatun AA, Muthanna YA, Punetha N, Jafri HH. Collective dynamics of coupled Lorenz oscillators near the Hopf boundary: Intermittency and chimera states. Phys Rev E 2024; 109:034208. [PMID: 38632727 DOI: 10.1103/physreve.109.034208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
We study collective dynamics of networks of mutually coupled identical Lorenz oscillators near a subcritical Hopf bifurcation. Such systems exhibit induced multistable behavior with interesting spatiotemporal dynamics including synchronization, desynchronization, and chimera states. For analysis, we first consider a ring topology with nearest-neighbor coupling and find that the system may exhibit intermittent behavior due to the complex basin structures and dynamical frustration, where temporal dynamics of the oscillators in the ensemble switches between different attractors. Consequently, different oscillators may show a dynamics that is intermittently synchronized (or desynchronized), giving rise to intermittent chimera states. The behavior of the intermittent laminar phases is characterized by the characteristic time spent in the synchronization manifold, which decays as a power law. Such intermittent dynamics is quite general and is also observed in an ensemble of a large number of oscillators arranged in variety of network topologies including nonlocal, scale-free, random, and small-world networks.
Collapse
Affiliation(s)
- Anjuman Ara Khatun
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Yusra Ahmed Muthanna
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
- Physics Department, Taiz University, Taiz 6803, Yemen
| | | | - Haider Hasan Jafri
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
| |
Collapse
|
3
|
Chandran P, Gopal R, Chandrasekar VK, Athavan N. Chimera-like states induced by additional dynamic nonlocal wirings. CHAOS (WOODBURY, N.Y.) 2020; 30:063106. [PMID: 32611102 DOI: 10.1063/1.5144929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We investigate the existence of chimera-like states in a small-world network of chaotically oscillating identical Rössler systems with an addition of randomly switching nonlocal links. By varying the small-world coupling strength, we observe no chimera-like state either in the absence of nonlocal wirings or with static nonlocal wirings. When we give an additional nonlocal wiring to randomly selected nodes and if we allow the random selection of nodes to change with time, we observe the onset of chimera-like states. Upon increasing the number of randomly selected nodes gradually, we find that the incoherent window keeps on shrinking, whereas the chimera-like window widens up. Moreover, the system attains a completely synchronized state comparatively sooner for a lower coupling strength. Also, we show that one can induce chimera-like states by a suitable choice of switching times, coupling strengths, and a number of nonlocal links. We extend the above-mentioned randomized injection of nonlocal wirings for the cases of globally coupled Rössler oscillators and a small-world network of coupled FitzHugh-Nagumo oscillators and obtain similar results.
Collapse
Affiliation(s)
- P Chandran
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| | - R Gopal
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Athavan
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| |
Collapse
|
4
|
Chandran P, Gopal R, Chandrasekar VK, Athavan N. Chimera states in coupled logistic maps with additional weak nonlocal topology. CHAOS (WOODBURY, N.Y.) 2019; 29:053125. [PMID: 31154761 DOI: 10.1063/1.5084301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate the occurrence of coexisting domains of partially coherent and incoherent patterns or simply known as chimera states in a network of globally coupled logistic maps upon addition of weak nonlocal topology. We find that the chimera states survive even after we disconnect nonlocal connections of some of the nodes in the network. Also, we show that the chimera states exist when we introduce symmetric gaps in the nonlocal coupling between predetermined nodes. We ascertain our results, for the existence of chimera states, by carrying out the recurrence quantification analysis and by computing the strength of incoherence. We extend our analysis for the case of small-world networks of coupled logistic maps and found the emergence of chimeralike states under the influence of weak nonlocal topology.
Collapse
Affiliation(s)
- P Chandran
- Department of Physics, H.H. The Rajah's College, Pudukkottai 622 001, Tamil Nadu, India
| | - R Gopal
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Athavan
- Department of Physics, H.H. The Rajah's College, Pudukkottai 622 001, Tamil Nadu, India
| |
Collapse
|
5
|
Kasatkin DV, Yanchuk S, Schöll E, Nekorkin VI. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings. Phys Rev E 2017; 96:062211. [PMID: 29347359 DOI: 10.1103/physreve.96.062211] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Indexed: 06/07/2023]
Abstract
We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.
Collapse
Affiliation(s)
- D V Kasatkin
- Institute of Applied Physics of RAS, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
| | - S Yanchuk
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - E Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - V I Nekorkin
- Institute of Applied Physics of RAS, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Ujjwal SR, Punetha N, Prasad A, Ramaswamy R. Emergence of chimeras through induced multistability. Phys Rev E 2017; 95:032203. [PMID: 28415241 DOI: 10.1103/physreve.95.032203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 11/07/2022]
Abstract
Chimeras, namely coexisting desynchronous and synchronized dynamics, are formed in an ensemble of identically coupled identical chaotic oscillators when the coupling induces multiple stable attractors, and further when the basins of the different attractors are intertwined in a complex manner. When there is coupling-induced multistability, an ensemble of identical chaotic oscillators-with global coupling, or also under the influence of common noise or an external drive (chaotic, periodic, or quasiperiodic)-inevitably exhibits chimeric behavior. Induced multistability in the system leads to the formation of distinct subpopulations, one or more of which support synchronized dynamics, while in others the motion is asynchronous or incoherent. We study the mechanism for the emergence of such chimeric states, and we discuss the generality of our results.
Collapse
Affiliation(s)
- Sangeeta Rani Ujjwal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nirmal Punetha
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany
| | - Awadhesh Prasad
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
7
|
Premalatha K, Chandrasekar VK, Senthilvelan M, Lakshmanan M. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators. Phys Rev E 2017; 95:022208. [PMID: 28297891 DOI: 10.1103/physreve.95.022208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 06/06/2023]
Abstract
We show the existence of chimeralike states in two distinct groups of identical populations of globally coupled Stuart-Landau oscillators. The existence of chimeralike states occurs only for a small range of frequency difference between the two populations, and these states disappear for an increase of mismatch between the frequencies. Here the chimeralike states are characterized by the synchronized oscillations in one population and desynchronized oscillations in another population. We also find that such states observed in two distinct groups of identical populations of nonlocally coupled oscillators are different from the above case in which coexisting domains of synchronized and desynchronized oscillations are observed in one population and the second population exhibits synchronized oscillations for spatially prepared initial conditions. Perturbation from such spatially prepared initial condition leads to the existence of imperfectly synchronized states. An imperfectly synchronized state represents the existence of solitary oscillators which escape from the synchronized group in population I and synchronized oscillations in population II. Also the existence of chimera state is independent of the increase of frequency mismatch between the populations. We also find the coexistence of different dynamical states with respect to different initial conditions, which causes multistability in the globally coupled system. In the case of nonlocal coupling, the system does not show multistability except in the cluster state region.
Collapse
Affiliation(s)
- K Premalatha
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamilnadu, India
| | - M Senthilvelan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|