1
|
Mondal A, Morrison G. Compression-induced buckling of a semiflexible filament in two and three dimensions. J Chem Phys 2022; 157:104903. [DOI: 10.1063/5.0104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of biomolecules to exert forces on their surroundings or resist compression from the environment is essential in a variety of biologically relevant contexts. For filaments in the low-temperature limit and under a constant compressive force, Euler buckling theory predicts a sudden transition from a compressed to a bent state in these slender rods. In this paper, we use a mean-field theory to show that if a semiflexible chain is compressed at a finite temperature with a fixed end-to-end distance (permitting fluctuations in the compressive forces), it exhibits a continuous phase transition to a buckled state at a critical level of compression. We determine a quantitatively accurate prediction of the transverse position distribution function of the midpoint of the chain that indicates this transition. We find the mean compressive forces are non-monotonic as the extension of the filament varies, consistent with the observation that strongly buckled filaments are less able to bear an external load. We also find that for the fixed extension (isometric) ensemble, the buckling transition does not coincide with the local minimum of the mean force (in contrast to Euler buckling). We also show the theory is highly sensitive to fluctuations in length in two dimensions, and that the buckling transition can still be accurately recovered by accounting for those fluctuations. These predictions may be useful in understanding the behavior of filamentous biomolecules compressed by fluctuating forces, relevant in a variety of biological contexts.
Collapse
Affiliation(s)
- Ananya Mondal
- Physics, University of Houston, United States of America
| | - Greg Morrison
- Physics, University of Houston, United States of America
| |
Collapse
|
2
|
Soukarié D, Rousseau P, Salhi M, de Caro A, Escudier JM, Tardin C, Ecochard V, Salomé L. Single-Molecule Sandwich Aptasensing on Nanoarrays by Tethered Particle Motion Analysis. Anal Chem 2022; 94:4319-4327. [PMID: 35226451 DOI: 10.1021/acs.analchem.1c04995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-throughput single-molecule techniques are expected to challenge the demand for rapid, simple, and sensitive detection methods in health and environmental fields. Based on a single-DNA-molecule biochip for the parallelization of tethered particle motion analyses by videomicroscopy coupled to image analysis and its smart combination with aptamers, we successfully developed an aptasensor enabling the detection of single target molecules by a sandwich assay. One aptamer is grafted to the nanoparticles tethered to the surface by a long DNA molecule bearing the second aptamer in its middle. The detection and quantification of the target are direct. The recognition of the target by a pair of aptamers leads to a looped configuration of the DNA-particle complex associated with a restricted motion of the particles, which is monitored in real time. An analytical range extending over 3 orders of magnitude of target concentration with a limit of detection in the picomolar range was obtained for thrombin.
Collapse
Affiliation(s)
- Diana Soukarié
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Philippe Rousseau
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Maya Salhi
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Vincent Ecochard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
3
|
Hirano K, Iwaki T, Ishido T, Yoshikawa Y, Naruse K, Yoshikawa K. Stretching of single DNA molecules caused by accelerating flow on a microchip. J Chem Phys 2018; 149:165101. [PMID: 30384753 DOI: 10.1063/1.5040564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
DNA elongation induced by fluidic stress was investigated on a microfluidic chip composed of a large inlet pool and a narrow channel. Through single-DNA observation with fluorescence microscopy, the manner of stretching of individual T4 DNA molecules (166 kbp) was monitored near the area of accelerating flow with narrowing streamlines. The results showed that the DNA long-axis length increased in a sigmoidal manner depending on the magnitude of flow acceleration, or shear, along the DNA chain. To elucidate the physical mechanism of DNA elongation, we performed a theoretical study by adopting a model of a coarse-grained nonlinear elastic polymer chain elongated by shear stress due to acceleration flow along the chain direction.
Collapse
Affiliation(s)
- Ken Hirano
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 Japan
| | - Takafumi Iwaki
- Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Tomomi Ishido
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Science, Doshisha Universiy, Kyotanabe, Kyoto 610-0321, Japan
| | - Keiji Naruse
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kenichi Yoshikawa
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 Japan
| |
Collapse
|