1
|
From subcritical behavior to a correlation-induced transition in rumor models. Nat Commun 2022; 13:3049. [PMID: 35650264 PMCID: PMC9160067 DOI: 10.1038/s41467-022-30683-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Rumors and information spreading emerge naturally from human-to-human interactions and have a growing impact on our everyday life due to increasing and faster access to information, whether trustworthy or not. A popular mathematical model for spreading rumors, data, or news is the Maki–Thompson model. Mean-field approximations suggested that this model does not have a phase transition, with rumors always reaching a fraction of the population. Conversely, here, we show that a continuous phase transition is present in this model. Moreover, we explore a modified version of the Maki–Thompson model that includes a forgetting mechanism, changing the Markov chain’s nature and allowing us to use a plethora of analytic and numeric methods. Particularly, we characterize the subcritical behavior, where the lifespan of a rumor increases as the spreading rate drops, following a power-law relationship. Our findings show that the dynamic behavior of rumor models is much richer than shown in previous investigations. Rumors and information spreading emerge naturally from human-to-human interaction and have a growing impact on people’s lives due to increasing and faster access to information, whether trustworthy or not. The authors study the Maki–Thompson rumor model and its variation, revealing a phase transition and providing insights into the nature of this transition.
Collapse
|
2
|
Achterberg MA, Prasse B, Ma L, Trajanovski S, Kitsak M, Van Mieghem P. Comparing the accuracy of several network-based COVID-19 prediction algorithms. INTERNATIONAL JOURNAL OF FORECASTING 2022; 38:489-504. [PMID: 33071402 PMCID: PMC7546239 DOI: 10.1016/j.ijforecast.2020.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Researchers from various scientific disciplines have attempted to forecast the spread of coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approaches, we obtain the Network Inference-based Prediction Algorithm (NIPA). In this paper, we analyse a diverse set of COVID-19 forecast algorithms, including several modifications of NIPA. Among the algorithms that we evaluated, the original NIPA performed best at forecasting the spread of COVID-19 in Hubei, China and in the Netherlands. In particular, we show that network-based forecasting is superior to any other forecasting algorithm.
Collapse
Affiliation(s)
- Massimo A Achterberg
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
| | - Bastian Prasse
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
| | - Long Ma
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
| | | | - Maksim Kitsak
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
| |
Collapse
|
3
|
Analytical Modeling of the Temporal Evolution of Epidemics Outbreaks Accounting for Vaccinations. PHYSICS 2021. [DOI: 10.3390/physics3020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the vaccination against Covid-19 now available, how vaccination campaigns influence the mathematical modeling of epidemics is quantitatively explored. In this paper, the standard susceptible-infectious-recovered/removed (SIR) epidemic model is extended to a fourth compartment, V, of vaccinated persons. This extension involves the time t-dependent effective vaccination rate, v(t), that regulates the relationship between susceptible and vaccinated persons. The rate v(t) competes with the usual infection, a(t), and recovery, μ(t), rates in determining the time evolution of epidemics. The occurrence of a pandemic outburst with rising rates of new infections requires k+b<1−2η, where k=μ(0)/a(0) and b=v(0)/a(0) denote the initial values for the ratios of the three rates, respectively, and η≪1 is the initial fraction of infected persons. Exact analytical inverse solutions t(Q) for all relevant quantities Q=[S,I,R,V] of the resulting SIRV model in terms of Lambert functions are derived for the semi-time case with time-independent ratios k and b between the recovery and vaccination rates to the infection rate, respectively. These inverse solutions can be approximated with high accuracy, yielding the explicit time-dependences Q(t) by inverting the Lambert functions. The values of the three parameters k, b and η completely determine the reduced time evolution of the SIRV-quantities Q(τ). The influence of vaccinations on the total cumulative number and the maximum rate of new infections in different countries is calculated by comparing with monitored real time Covid-19 data. The reduction in the final cumulative fraction of infected persons and in the maximum daily rate of new infections is quantitatively determined by using the actual pandemic parameters in different countries. Moreover, a new criterion is developed that decides on the occurrence of future Covid-19 waves in these countries. Apart from in Israel, this can happen in all countries considered.
Collapse
|
4
|
Achterberg MA, Dubbeldam JLA, Stam CJ, Van Mieghem P. Classification of link-breaking and link-creation updating rules in susceptible-infected-susceptible epidemics on adaptive networks. Phys Rev E 2020; 101:052302. [PMID: 32575241 DOI: 10.1103/physreve.101.052302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/26/2020] [Indexed: 01/02/2023]
Abstract
In the classical susceptible-infected-susceptible (SIS) model, a disease or infection spreads over a given, mostly fixed graph. However, in many real complex networks, the topology of the underlying graph can change due to the influence of the dynamical process. In this paper, besides the spreading process, the network adaptively changes its topology based on the states of the nodes in the network. An entire class of link-breaking and link-creation mechanisms, which we name Generalized Adaptive SIS (G-ASIS), is presented and analyzed. For each instance of G-ASIS using the complete graph as initial network, the relation between the epidemic threshold and the effective link-breaking rate is determined to be linear, constant, or unknown. Additionally, we show that there exist link-breaking and link-creation mechanisms for which the metastable state does not exist. We confirm our theoretical results with several numerical simulations.
Collapse
Affiliation(s)
- Massimo A Achterberg
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
| | - Johan L A Dubbeldam
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
| |
Collapse
|
5
|
Van Mieghem P, Wang F. Time dependence of susceptible-infected-susceptible epidemics on networks with nodal self-infections. Phys Rev E 2020; 101:052310. [PMID: 32575300 DOI: 10.1103/physreve.101.052310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022]
Abstract
The average fraction of infected nodes, in short the prevalence, of the Markovian ɛ-SIS (susceptible-infected-susceptible) process with small self-infection rate ɛ>0 exhibits, as a function of time, a typical "two-plateau" behavior, which was first discovered in the complete graph K_{N}. Although the complete graph is often dismissed as an unacceptably simplistic approximation, its analytic tractability allows to unravel deeper details, that are surprisingly also observed in other graphs as demonstrated by simulations. The time-dependent mean-field approximation for K_{N} performs only reasonably well for relatively large self-infection rates, but completely fails to mimic the typical Markovian ɛ-SIS process with small self-infection rates. While self-infections, particularly when their rate is small, are usually ignored, the interplay of nodal self-infection and spread over links may explain why absorbing processes are hardly observed in reality, even over long time intervals.
Collapse
Affiliation(s)
- Piet Van Mieghem
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, The Netherlands
| | - Fenghua Wang
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, The Netherlands
| |
Collapse
|
6
|
Van Mieghem P. Explosive phase transition in susceptible-infected-susceptible epidemics with arbitrary small but nonzero self-infection rate. Phys Rev E 2020; 101:032303. [PMID: 32289894 DOI: 10.1103/physreve.101.032303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/19/2020] [Indexed: 11/07/2022]
Abstract
The ɛ-susceptible-infected-susceptible (SIS) epidemic model on a graph adds an independent, Poisson self-infection process with rate ɛ to the "classical" Markovian SIS process. The steady state in the classical SIS process (with ɛ=0) on any finite graph is the absorbing or overall-healthy state, in which the virus is eradicated from the network. We report that there always exists a phase transition around τ_{c}^{ɛ}=O(ɛ^{-1/N-1}) in the ɛ-SIS process on the complete graph K_{N} with N nodes, above which the effective infection rate τ>τ_{c}^{ɛ} causes the average steady-state fraction of infected nodes to approach that of the mean-field approximation, no matter how small, but not zero, the self-infection rate ɛ is. For τ<τ_{c}^{ɛ} and small ɛ, the network is almost overall healthy. The observation was found by mathematical analysis on the complete graph K_{N}, but we claim that the phase transition of explosive type may also occur in any other finite graph. We thus conclude that the overall-healthy state of the classical Markovian SIS model is unstable in the ɛ-SIS process and, hence, unlikely to exist in reality, where "background" infection ɛ>0 is imminent.
Collapse
Affiliation(s)
- Piet Van Mieghem
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O. Box 5031, 2600 GA Delft, The Netherlands
| |
Collapse
|
7
|
Devriendt K, Van Mieghem P. Unified mean-field framework for susceptible-infected-susceptible epidemics on networks, based on graph partitioning and the isoperimetric inequality. Phys Rev E 2017; 96:052314. [PMID: 29347672 DOI: 10.1103/physreve.96.052314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 06/07/2023]
Abstract
We propose an approximation framework that unifies and generalizes a number of existing mean-field approximation methods for the susceptible-infected-susceptible (SIS) epidemic model on complex networks. We derive the framework, which we call the unified mean-field framework (UMFF), as a set of approximations of the exact Markovian SIS equations. Our main novelty is that we describe the mean-field approximations from the perspective of the isoperimetric problem, which results in bounds on the UMFF approximation error. These new bounds provide insight in the accuracy of existing mean-field methods, such as the N-intertwined mean-field approximation and heterogeneous mean-field method, which are contained by UMFF. Additionally, the isoperimetric inequality relates the UMFF approximation accuracy to the regularity notions of Szemerédi's regularity lemma.
Collapse
Affiliation(s)
- K Devriendt
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, the Netherlands
| | - P Van Mieghem
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, the Netherlands
| |
Collapse
|
8
|
|