1
|
Williams MJ, Gray MC. Microcanonical Analysis of Semiflexible Homopolymers with Variable-Width Bending Potential. Polymers (Basel) 2025; 17:906. [PMID: 40219295 PMCID: PMC11991406 DOI: 10.3390/polym17070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Understanding the structural dynamics of semiflexible polymers in an implicit solvent under varying conditions provides valuable insights into their behavior in diverse environments. In this work, we systematically investigate the effect of the angular width of the bending potential on structural state behavior and conformational variability using microcanonical analysis. A range of angular widths is explored, with the widest value corresponding directly to the classic semiflexible polymer model, which exhibits a diverse set of structural states, including Two-Strand, Three-Strand, Four-Strand, Ring, Random Coil, and Globule configurations. As the angular width narrows, structural variability within states decreases, overlap between structural states is reduced, and conformations become more stable, leading to an expansion of the parameter space dominated by individual structures. By examining microcanonical entropy and its derivatives, we identify transitions analogous to first-, second-, and third-order thermodynamic transitions, providing a deeper understanding of the configurational landscape of semiflexible polymers.
Collapse
|
2
|
Yan R, Liu S, Zhao N. Spiral and helical formation of passive and active polymers with stiffness heterogeneity in a spherical cavity. SOFT MATTER 2025; 21:1401-1415. [PMID: 39869073 DOI: 10.1039/d5sm00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Biomolecules usually adopt ubiquitous circular structures which are important for their functionality. Based on three-dimensional Langevin dynamics simulations, we investigate the conformational change of a polymer confined in a spherical cavity. Both passive and active polymers with either homogeneous or heterogeneous stiffness are analyzed in a comparative manner. For a homogeneous chain, continuous rigidity along the backbone promotes a flat spiral expanding along the cavity surface, while activity-induced softening results in a less-ordered spiral structure. Stiffness heterogeneity basically plays a destructive role in spiral formation. However, as the chain is endowed with activity, the heterogeneity effect depends on the stiffness of the front edge of the chain. As the head is rigid, the flat spiral largely holds, whereas such a structure easily loses as the head is flexible. More intriguingly, a short flexible head induces a distinct compact helix in the interior of the cavity. Under low friction conditions, the prominent inertial effect leads to the break-up of both spiral and helix. In the presence of crowding, the flat spiral close to the surface keeps its stability, while the compact helix inside tends to be dissolved. Our results decipher the significant effects of activity, rigidity, confinement and crowding on modulating polymer conformations, which provides a deeper insight about mechanisms for circular structure formation of biopolymers in crowded environments.
Collapse
Affiliation(s)
- Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shihang Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Aierken D, Bachmann M. Secondary-structure phase formation for semiflexible polymers by bifurcation in hyperphase space. Phys Chem Chem Phys 2023; 25:30246-30258. [PMID: 37921656 DOI: 10.1039/d3cp02815a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Canonical analysis has long been the primary analysis method for studies of phase transitions. However, this approach is not sensitive enough if transition signals are too close in temperature space. The recently introduced generalized microcanonical inflection-point analysis method not only enables the systematic identification and classification of transitions in systems of any size, but it can also distinguish transitions that standard canonical analysis cannot resolve. By applying this method to a generic coarse-grained model for semiflexible polymers, we identify a mixed structural phase dominated by secondary structures such as hairpins and loops that originates from a bifurcation in the hyperspace spanned by inverse temperature and bending stiffness. This intermediate phase, which is embraced by the well-known random-coil and toroidal phases, is testimony to the necessity of balancing entropic variability and energetic stability in functional macromolecules under physiological conditions.
Collapse
Affiliation(s)
- Dilimulati Aierken
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08540, USA.
- Soft Matter Systems Research Group, Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Williams MJ. Microcanonical Analysis of Helical Homopolymers: Exploring the Density of States and Structural Characteristics. Polymers (Basel) 2023; 15:3870. [PMID: 37835919 PMCID: PMC10575320 DOI: 10.3390/polym15193870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigates the density of states and structural characteristics of helical homopolymers. Comprising repeating identical units, the model enables the exploration of complex behaviors arising from a simple, yet generalized, set of potentials. Utilizing microcanonical analysis, transitions between helical structures are identified and categorized. Through a systematic comparison of results under varying conditions, we develop a nuanced understanding of the system's general behavior. A two-dimensional plot illustrates the relative distribution of different structural types, effectively showcasing their prevalence. The findings of this study substantially advance our understanding of the density of states and structural transformations of helical homopolymers across a range of conditions. Additionally, the prevalence plot offers valuable insights into the occurrence of suppressed intermediate states, particularly in models featuring stiff helix segments. This research significantly enhances our understanding of the complex interactions governing helix bundling phenomena within the context of helical homopolymers.
Collapse
Affiliation(s)
- Matthew J Williams
- Institute of Engineering, Murray State University, Murray, KY 42071, USA
| |
Collapse
|
5
|
Du J, Yin H, Zhu H, Wan T, Wang B, Qi H, Lu Y, Dai L, Chen T. Forming a Double-Helix Phase of Single Polymer Chains by the Cooperation between Local Structure and Nonlocal Attraction. PHYSICAL REVIEW LETTERS 2022; 128:197801. [PMID: 35622042 DOI: 10.1103/physrevlett.128.197801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Double-helix structures, such as DNA, are formed in nature to realize many unique functions. Inspired by this, researchers are pursuing strategies to design such structures from polymers. A key question is whether the double helix can be formed from the self-folding of a single polymer chain without specific interactions. Here, using Langevin dynamics simulation and theoretical analysis, we find that a stable double-helix phase can be achieved by the self-folding of single semiflexible polymers as a result of the cooperation between local structure and nonlocal attraction. The critical temperature of double-helix formation approximately follows T^{cri}∼ln(k_{θ}) and T^{cri}∼ln(k_{τ}), where k_{θ} and k_{τ} are the polymer bending and torsion stiffness, respectively. Furthermore, the double helix can exhibit major and minor grooves due to symmetric break for better packing. Our results provide a novel guide to the experimental design of the double helix.
Collapse
Affiliation(s)
- Jiang Du
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hongmei Yin
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Haoqi Zhu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Tiantian Wan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Binzhou Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hongtao Qi
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yanfang Lu
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Tao Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
6
|
Kumar A, Hertel B, Müllen K. Self-Assembly and Responsive Behavior of Poly(peptide)-Based Copolymers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Avneesh Kumar
- Institute of Organic Chemistry; Technical University of Darmstadt; L2/02, Room No. 554, Alarich-Weiss-Str. 4 Darmstadt 64287 Germany
| | - Brigitte Hertel
- Institute of Biology; TU Darmstadt; Schnittspahnstrasse 3 64287 Darmstadt Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchMainz; Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
7
|
Williams MJ, Bachmann M. The effect of surface adsorption on tertiary structure formation in helical polymers. J Chem Phys 2017; 147:024902. [DOI: 10.1063/1.4991564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew J. Williams
- Institute of Engineering, Murray State University, Murray, Kentucky 42071, USA
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
8
|
Zierenberg J, Marenz M, Janke W. Dilute Semiflexible Polymers with Attraction: Collapse, Folding and Aggregation. Polymers (Basel) 2016; 8:E333. [PMID: 30974608 PMCID: PMC6432187 DOI: 10.3390/polym8090333] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
We review the current state on the thermodynamic behavior and structural phases of self- and mutually-attractive dilute semiflexible polymers that undergo temperature-driven transitions. In extreme dilution, polymers may be considered isolated, and this single polymer undergoes a collapse or folding transition depending on the internal structure. This may go as far as to stable knot phases. Adding polymers results in aggregation, where structural motifs again depend on the internal structure. We discuss in detail the effect of semiflexibility on the collapse and aggregation transition and provide perspectives for interesting future investigations.
Collapse
Affiliation(s)
- Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Martin Marenz
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| |
Collapse
|
9
|
Williams MJ, Bachmann M. System-Size Dependence of Helix-Bundle Formation for Generic Semiflexible Polymers. Polymers (Basel) 2016; 8:E245. [PMID: 30974521 PMCID: PMC6431926 DOI: 10.3390/polym8070245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Helical polymer bundles are an important fixture in biomolecular systems. The particular structural geometry of helix bundles is dependent on many factors including the length of the polymer chain. In this study, we performed Monte Carlo simulations of a coarse-grained model for helical polymers to determine the influence of polymer length on tertiary structure formation. Helical structures of semiflexible polymers are analyzed for several chain lengths under thermal conditions. Structural hyperphase diagrams, parametrized by torsion strength and temperature, are constructed and compared.
Collapse
Affiliation(s)
- Matthew J Williams
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, GA 30602, USA.
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, GA 30602, USA.
- Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá (MT), Brazil.
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte (MG), Brazil.
| |
Collapse
|