1
|
Kusch L, Breyton M, Depannemaecker D, Petkoski S, Jirsa VK. Synchronization in spiking neural networks with short and long connections and time delays. CHAOS (WOODBURY, N.Y.) 2025; 35:013161. [PMID: 39883693 DOI: 10.1063/5.0158186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/13/2024] [Indexed: 02/01/2025]
Abstract
Synchronization is fundamental for information processing in oscillatory brain networks and is strongly affected by time delays via signal propagation along long fibers. Their effect, however, is less evident in spiking neural networks given the discrete nature of spikes. To bridge the gap between these different modeling approaches, we study the synchronization conditions, dynamics underlying synchronization, and the role of the delay of a two-dimensional network model composed of adaptive exponential integrate-and-fire neurons. Through parameter exploration of neuronal and network properties, we map the synchronization behavior as a function of unidirectional long-range connection and the microscopic network properties and demonstrate that the principal network behaviors comprise standing or traveling waves of activity and depend on noise strength, E/I balance, and voltage adaptation, which are modulated by the delay of the long-range connection. Our results show the interplay of micro- (single neuron properties), meso- (connectivity and composition of the neuronal network), and macroscopic (long-range connectivity) parameters for the emergent spatiotemporal activity of the brain.
Collapse
Affiliation(s)
- Lionel Kusch
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
| | - Martin Breyton
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
- Service de Pharmacologie Clinique et Pharmacovigilance, Assistance Publique des Hôpitaux de Marseille, Marseille 13005, France
| | - Damien Depannemaecker
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
| | - Spase Petkoski
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
| | - Viktor K Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
| |
Collapse
|
2
|
Forrester M, Petros S, Cattell O, Lai YM, O'Dea RD, Sotiropoulos S, Coombes S. Whole brain functional connectivity: Insights from next generation neural mass modelling incorporating electrical synapses. PLoS Comput Biol 2024; 20:e1012647. [PMID: 39637233 DOI: 10.1371/journal.pcbi.1012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The ready availability of brain connectome data has both inspired and facilitated the modelling of whole brain activity using networks of phenomenological neural mass models that can incorporate both interaction strength and tract length between brain regions. Recently, a new class of neural mass model has been developed from an exact mean field reduction of a network of spiking cortical cell models with a biophysically realistic model of the chemical synapse. Moreover, this new population dynamics model can naturally incorporate electrical synapses. Here we demonstrate the ability of this new modelling framework, when combined with data from the Human Connectome Project, to generate patterns of functional connectivity (FC) of the type observed in both magnetoencephalography and functional magnetic resonance neuroimaging. Some limited explanatory power is obtained via an eigenmode description of frequency-specific FC patterns, obtained via a linear stability analysis of the network steady state in the neigbourhood of a Hopf bifurcation. However, direct numerical simulations show that empirical data is more faithfully recapitulated in the nonlinear regime, and exposes a key role of gap junction coupling strength in generating empirically-observed neural activity, and associated FC patterns and their evolution. Thereby, we emphasise the importance of maintaining known links with biological reality when developing multi-scale models of brain dynamics. As a tool for the study of dynamic whole brain models of the type presented here we further provide a suite of C++ codes for the efficient, and user friendly, simulation of neural mass networks with multiple delayed interactions.
Collapse
Affiliation(s)
- Michael Forrester
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sammy Petros
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Cattell
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Yi Ming Lai
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stamatios Sotiropoulos
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Coombes S, O'Dea R, Nicks R. Brain anatomy and dynamics: A commentary on "Does the brain behave like a (complex) network? I. Dynamics" by Papo and Buldú (2024). Phys Life Rev 2024; 49:38-39. [PMID: 38513521 DOI: 10.1016/j.plrev.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Papo and Buldú [1] ask whether the brain truly acts as a network, or whether it is a convenient coincidence that it can be described with the tools of complex network theory, and the emerging field of network neuroscience. After a broad ranging discussion of networkness they explore some of the ways in which the combination of brain structure and dynamics can indeed better be understood as realising a complex network that subserves brain function. To complement and bolster this perspective, which is informed largely from a physics viewpoint, we direct the reader to additional tools, approaches and insights available from applied mathematics that may further help address some of the many remaining open challenges in this field.
Collapse
Affiliation(s)
- Stephen Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Reuben O'Dea
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Rachel Nicks
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
4
|
Mollaei F, Basha Chinoor MA. Microstructural white matter changes underlying speech deficits in Parkinson's disease. BRAIN AND LANGUAGE 2024; 249:105378. [PMID: 38198905 DOI: 10.1016/j.bandl.2024.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/04/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Speech impairments are one of the common symptoms of individuals with Parkinson's disease (PD). However, little is known about the underlying neuroanatomical structural deficits specifically in the basal ganglia-thalamocortical (BGTC) loop in the speech deficits of PD. Here we investigated white matter differences in PD using probabilistic tractography. Diffusion tensor imaging data were downloaded from the Parkinson's Progression Markers Initiative database. We included three groups of participants: 20 PD individuals with speech deficits, 20 PD individuals without speech deficits, and 20 age- and gender-matched control participants. Overall, PD individuals with speech deficits had higher mean diffusivity in the BGTC pathway in the left hemisphere compared with PD individuals without speech deficits. The present study exhibits that there may be a distinct pathophysiological profile of white matter for speech deficits in PD.
Collapse
Affiliation(s)
- Fatemeh Mollaei
- School of Psychology and Clinical Language Sciences, University of Reading, Harry Pitt Building, Early Gate, Whiteknights, RG6 6ES Reading, England, United Kingdom; Centre for Integrative Neuroscience and Neurodynamcis (CINN), University of Reading, Reading, United Kingdom, Early Gate, Whiteknights, RG6 6BE Reading, England, United Kingdom.
| | - Mohammed Asif Basha Chinoor
- School of Psychology and Clinical Language Sciences, University of Reading, Harry Pitt Building, Early Gate, Whiteknights, RG6 6ES Reading, England, United Kingdom; Centre for Integrative Neuroscience and Neurodynamcis (CINN), University of Reading, Reading, United Kingdom, Early Gate, Whiteknights, RG6 6BE Reading, England, United Kingdom
| |
Collapse
|
5
|
Petkoski S, Ritter P, Jirsa VK. White-matter degradation and dynamical compensation support age-related functional alterations in human brain. Cereb Cortex 2023; 33:6241-6256. [PMID: 36611231 PMCID: PMC10183745 DOI: 10.1093/cercor/bhac500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 01/09/2023] Open
Abstract
Structural connectivity of the brain at different ages is analyzed using diffusion-weighted magnetic resonance imaging (MRI) data. The largest decrease of streamlines is found in frontal regions and for long inter-hemispheric links. The average length of the tracts also decreases, but the clustering is unaffected. From functional MRI we identify age-related changes of dynamic functional connectivity (dFC) and spatial covariation features of functional connectivity (FC) links captured by metaconnectivity. They indicate more stable dFC, but wider range and variance of MC, whereas static features of FC did not show any significant differences with age. We implement individual connectivity in whole-brain models and test several hypotheses for the mechanisms of operation among underlying neural system. We demonstrate that age-related functional fingerprints are only supported if the model accounts for: (i) compensation of the individual brains for the overall loss of structural connectivity and (ii) decrease of propagation velocity due to the loss of myelination. We also show that with these 2 conditions, it is sufficient to decompose the time-delays as bimodal distribution that only distinguishes between intra- and inter-hemispheric delays, and that the same working point also captures the static FC the best, and produces the largest variability at slow time-scales.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Viktor K Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
6
|
Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G. Pattern of frustration formation in the functional brain network. Netw Neurosci 2022; 6:1334-1356. [PMID: 38800463 PMCID: PMC11117102 DOI: 10.1162/netn_a_00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/05/2022] [Indexed: 05/29/2024] Open
Abstract
The brain is a frustrated system that contains conflictual link arrangements named frustration. The frustration as a source of disorder prevents the system from settling into low-energy states and provides flexibility for brain network organization. In this research, we tried to identify the pattern of frustration formation in the brain at the levels of region, connection, canonical network, and hemisphere. We found that frustration formation has no uniform pattern. Some subcortical elements have an active role in frustration formation, despite low contributions from many cortical elements. Frustrating connections are mostly between-network connections, and triadic frustrations are mainly formed between three regions from three distinct canonical networks. We did not find any significant differences between brain hemispheres or any robust differences between the frustration formation patterns of various life-span stages. Our results may be interesting for those who study the organization of brain links and promising for those who want to manipulate brain networks.
Collapse
Affiliation(s)
- Majid Saberi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C. Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C. Tehran, Iran
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Gholamreza Jafari
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C. Tehran, Iran
- Physics Department, Shahid Beheshti University, Tehran, Iran
- Institute of Information Technology and Data Science, Irkutsk National Research Technical University, Irkutsk, Russia
| |
Collapse
|
7
|
Petkoski S, Jirsa VK. Normalizing the brain connectome for communication through synchronization. Netw Neurosci 2022; 6:722-744. [PMID: 36607179 PMCID: PMC9810372 DOI: 10.1162/netn_a_00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Networks in neuroscience determine how brain function unfolds, and their perturbations lead to psychiatric disorders and brain disease. Brain networks are characterized by their connectomes, which comprise the totality of all connections, and are commonly described by graph theory. This approach is deeply rooted in a particle view of information processing, based on the quantification of informational bits such as firing rates. Oscillations and brain rhythms demand, however, a wave perspective of information processing based on synchronization. We extend traditional graph theory to a dual, particle-wave, perspective, integrate time delays due to finite transmission speeds, and derive a normalization of the connectome. When applied to the database of the Human Connectome Project, it explains the emergence of frequency-specific network cores including the visual and default mode networks. These findings are robust across human subjects (N = 100) and are a fundamental network property within the wave picture. The normalized connectome comprises the particle view in the limit of infinite transmission speeds and opens the applicability of graph theory to a wide range of novel network phenomena, including physiological and pathological brain rhythms. These two perspectives are orthogonal, but not incommensurable, when understood within the novel, here-proposed, generalized framework of structural connectivity.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Viktor K. Jirsa
- Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
8
|
Winkler M, Dumont G, Schöll E, Gutkin B. Phase response approaches to neural activity models with distributed delay. BIOLOGICAL CYBERNETICS 2022; 116:191-203. [PMID: 34853889 DOI: 10.1007/s00422-021-00910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
In weakly coupled neural oscillator networks describing brain dynamics, the coupling delay is often distributed. We present a theoretical framework to calculate the phase response curve of distributed-delay induced limit cycles with infinite-dimensional phase space. Extending previous works, in which non-delayed or discrete-delay systems were investigated, we develop analytical results for phase response curves of oscillatory systems with distributed delay using Gaussian and log-normal delay distributions. We determine the scalar product and normalization condition for the linearized adjoint of the system required for the calculation of the phase response curve. As a paradigmatic example, we apply our technique to the Wilson-Cowan oscillator model of excitatory and inhibitory neuronal populations under the two delay distributions. We calculate and compare the phase response curves for the Gaussian and log-normal delay distributions. The phase response curves obtained from our adjoint calculations match those compiled by the direct perturbation method, thereby proving that the theory of weakly coupled oscillators can be applied successfully for distributed-delay-induced limit cycles. We further use the obtained phase response curves to derive phase interaction functions and determine the possible phase locked states of multiple inter-coupled populations to illuminate different synchronization scenarios. In numerical simulations, we show that the coupling delay distribution can impact the stability of the synchronization between inter-coupled gamma-oscillatory networks.
Collapse
Affiliation(s)
- Marius Winkler
- Group for Neural Theory, LNC INSERM U960, DEC, Ecole Normale Supérieure PSL* University, 24 rue Lhomond, 75005, Paris, France
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Grégory Dumont
- Group for Neural Theory, LNC INSERM U960, DEC, Ecole Normale Supérieure PSL* University, 24 rue Lhomond, 75005, Paris, France
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, Philippstraße 13, 10115, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473, Potsdam, Germany
| | - Boris Gutkin
- Group for Neural Theory, LNC INSERM U960, DEC, Ecole Normale Supérieure PSL* University, 24 rue Lhomond, 75005, Paris, France.
- Center for Cognition and Decision Making, Institue for Cognitive Neuroscience, NRU Higher School of Economics, Krivokolenniy sidewalk 3, 101000, Moscow, Russia.
| |
Collapse
|
9
|
Sathiyadevi K, Chandrasekar VK, Lakshmanan M. Emerging chimera states under nonidentical counter-rotating oscillators. Phys Rev E 2022; 105:034211. [PMID: 35428132 DOI: 10.1103/physreve.105.034211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Frequency plays a crucial role in exhibiting various collective dynamics in the coexisting corotating and counter-rotating systems. To illustrate the impact of counter-rotating frequencies, we consider a network of nonidentical and globally coupled Stuart-Landau oscillators with additional perturbation. Primarily, we investigate the dynamical transitions in the absence of perturbation, demonstrating that the transition from desynchronized state to cluster oscillatory state occurs through an interesting partial synchronization state in the oscillatory regime. Following this, the system dynamics transits to amplitude death and oscillation death states. Importantly, we find that the observed dynamical states do not preserve the parity (P) symmetry in the absence of perturbation. When the perturbation is increased one can note that the system dynamics exhibits a kind of transition which corresponds to a change from incoherent mixed synchronization to coherent mixed synchronization through a chimera state. In particular, incoherent mixed synchronization and coherent mixed synchronization states completely preserve the P symmetry, whereas the chimera state preserves the P symmetry only partially. To demonstrate the occurrence of such partial symmetry-breaking (chimera) state, we use basin stability analysis and discover that partial symmetry breaking exists as a result of the coexistence of symmetry-preserving and symmetry-breaking behavior in the initial state space. Further, a measure of the strength of P symmetry is established to quantify the P symmetry in the observed dynamical states. Subsequently, the dynamical transitions are investigated in the parametric spaces. Finally, by increasing the network size, the robustness of the chimera state is also inspected, and we find that the chimera state is robust even in networks of larger sizes. We also show the generality of the above results in the related reduced phase. model as well as in other coupled models such as the globally coupled van der Pol and Rössler oscillators.
Collapse
Affiliation(s)
- K Sathiyadevi
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Department of Physics, Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - M Lakshmanan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
10
|
Portoles O, Blesa M, van Vugt M, Cao M, Borst JP. Thalamic bursts modulate cortical synchrony locally to switch between states of global functional connectivity in a cognitive task. PLoS Comput Biol 2022; 18:e1009407. [PMID: 35263318 PMCID: PMC8936493 DOI: 10.1371/journal.pcbi.1009407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/21/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Performing a cognitive task requires going through a sequence of functionally diverse stages. Although it is typically assumed that these stages are characterized by distinct states of cortical synchrony that are triggered by sub-cortical events, little reported evidence supports this hypothesis. To test this hypothesis, we first identified cognitive stages in single-trial MEG data of an associative recognition task, showing with a novel method that each stage begins with local modulations of synchrony followed by a state of directed functional connectivity. Second, we developed the first whole-brain model that can simulate cortical synchrony throughout a task. The model suggests that the observed synchrony is caused by thalamocortical bursts at the onset of each stage, targeted at cortical synapses and interacting with the structural anatomical connectivity. These findings confirm that cognitive stages are defined by distinct states of cortical synchrony and explains the network-level mechanisms necessary for reaching stage-dependent synchrony states.
Collapse
Affiliation(s)
- Oscar Portoles
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Marieke van Vugt
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Ming Cao
- Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jelmer P. Borst
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Clusella P, Pietras B, Montbrió E. Kuramoto model for populations of quadratic integrate-and-fire neurons with chemical and electrical coupling. CHAOS (WOODBURY, N.Y.) 2022; 32:013105. [PMID: 35105122 DOI: 10.1063/5.0075285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We derive the Kuramoto model (KM) corresponding to a population of weakly coupled, nearly identical quadratic integrate-and-fire (QIF) neurons with both electrical and chemical coupling. The ratio of chemical to electrical coupling determines the phase lag of the characteristic sine coupling function of the KM and critically determines the synchronization properties of the network. We apply our results to uncover the presence of chimera states in two coupled populations of identical QIF neurons. We find that the presence of both electrical and chemical coupling is a necessary condition for chimera states to exist. Finally, we numerically demonstrate that chimera states gradually disappear as coupling strengths cease to be weak.
Collapse
Affiliation(s)
- Pau Clusella
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Bastian Pietras
- Institute of Mathematics, Technical University Berlin, 10623 Berlin, Germany
| | - Ernest Montbrió
- Neuronal Dynamics Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| |
Collapse
|
12
|
An S, Fousek J, Kiss ZHT, Cortese F, van der Wijk G, McAusland LB, Ramasubbu R, Jirsa VK, Protzner AB. High-resolution Virtual Brain Modeling Personalizes Deep Brain Stimulation for Treatment-Resistant Depression: Spatiotemporal Response Characteristics Following Stimulation of Neural Fiber Pathways. Neuroimage 2021; 249:118848. [PMID: 34954330 DOI: 10.1016/j.neuroimage.2021.118848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Over the past 15 years, deep brain stimulation (DBS) has been actively investigated as a groundbreaking therapy for patients with treatment-resistant depression (TRD); nevertheless, outcomes have varied from patient to patient, with an average response rate of ∼50%. The engagement of specific fiber tracts at the stimulation site has been hypothesized to be an important factor in determining outcomes, however, the resulting individual network effects at the whole-brain scale remain largely unknown. Here we provide a computational framework that can explore each individual's brain response characteristics elicited by selective stimulation of fiber tracts. We use a novel personalized in-silico approach, the Virtual Big Brain, which makes use of high-resolution virtual brain models at a mm-scale and explicitly reconstructs more than 100 000 fiber tracts for each individual. Each fiber tract is active and can be selectively stimulated. Simulation results demonstrate distinct stimulus-induced event-related potentials as a function of stimulation location, parametrized by the contact positions of the electrodes implanted in each patient, even though validation against empirical patient data reveals some limitations (i.e., the need for individual parameter adjustment, and differential accuracy across stimulation locations). This study provides evidence for the capacity of personalized high-resolution virtual brain models to investigate individual network effects in DBS for patients with TRD and opens up novel avenues in the personalized optimization of brain stimulation.
Collapse
Affiliation(s)
- Sora An
- Department of Communication Disorders, Ewha Womans University, 03760, Seoul, Republic of Korea.
| | - Jan Fousek
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005, Marseille, France
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Seaman Family MR Centre, Foothills Medical Centre, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Gwen van der Wijk
- Department of Psychology, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Laina Beth McAusland
- Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Viktor K Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005, Marseille, France.
| | - Andrea B Protzner
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, T2N 1N4, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Nair N, Hu K, Berrill M, Wiesenfeld K, Braiman Y. Using Disorder to Overcome Disorder: A Mechanism for Frequency and Phase Synchronization of Diode Laser Arrays. PHYSICAL REVIEW LETTERS 2021; 127:173901. [PMID: 34739284 DOI: 10.1103/physrevlett.127.173901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Noise and disorder are known, in certain circumstances and for certain systems, to improve the level of coherence over that of the noise-free system. Examples include cases in which disorder enhances response to periodic signals, and those where it suppresses chaotic behavior. We report a new type of disorder-enhancing mechanism, observed in a model that describes the dynamics of external cavity-coupled semiconductor laser arrays, where disorder of one type mitigates (and overcomes) the desynchronization effects due to a different disorder source. Here, we demonstrate stabilization of dynamical states due to frequency locking and subsequently frequency locking-induced phase locking. We have reduced the equations to a potential model that illustrates the mechanism behind the misalignment-induced frequency and phase synchronization.
Collapse
Affiliation(s)
- N Nair
- The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, Florida 32816, USA
| | - K Hu
- The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, Florida 32816, USA
| | - M Berrill
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - K Wiesenfeld
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Y Braiman
- The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, Florida 32816, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
14
|
Mollaei F, Mersov A, Woodbury M, Jobst C, Cheyne D, De Nil L. White matter microstructural differences underlying beta oscillations during speech in adults who stutter. BRAIN AND LANGUAGE 2021; 215:104921. [PMID: 33550120 DOI: 10.1016/j.bandl.2021.104921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The basal ganglia-thalamocortical (BGTC) loop may underlie speech deficits in developmental stuttering. In this study, we investigated the relationship between abnormal cortical neural oscillations and structural integrity alterations in adults who stutter (AWS) using a novel magnetoencephalography (MEG) guided tractography approach. Beta oscillations were analyzed using sensorimotor speech MEG, and white matter pathways were examined using tract-based spatial statistics (TBSS) and probabilistic tractography in 11 AWS and 11 fluent speakers. TBSS analysis revealed overlap between cortical regions of increased beta suppression localized to the mouth motor area and a reduced fractional anisotropy (FA) in the AWS group. MEG-guided tractography showed reduced FA within the BGTC loop from left putamen to subject-specific MEG peak. This is the first study to provide evidence that structural abnormalities may be associated with functional deficits in stuttering and reflect a network deficit within the BGTC loop that includes areas of the left ventral premotor cortex and putamen.
Collapse
Affiliation(s)
- Fatemeh Mollaei
- Department of Speech-Language Pathology, University of Toronto, 500 University Street, Toronto, Ontario M5G 1V7, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.
| | - Anna Mersov
- Department of Speech-Language Pathology, University of Toronto, 500 University Street, Toronto, Ontario M5G 1V7, Canada
| | - Merron Woodbury
- Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Cecilia Jobst
- Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Douglas Cheyne
- Department of Speech-Language Pathology, University of Toronto, 500 University Street, Toronto, Ontario M5G 1V7, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; Institute of Medical Sciences and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 2J7, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario M5T 1W7, Canada
| | - Luc De Nil
- Department of Speech-Language Pathology, University of Toronto, 500 University Street, Toronto, Ontario M5G 1V7, Canada; Rehabilitation Sciences Institute, Toronto, Ontario M5G 1V7, Canada
| |
Collapse
|
15
|
Ziaeemehr A, Valizadeh A. Frequency-Resolved Functional Connectivity: Role of Delay and the Strength of Connections. Front Neural Circuits 2021; 15:608655. [PMID: 33841105 PMCID: PMC8024621 DOI: 10.3389/fncir.2021.608655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/26/2021] [Indexed: 12/04/2022] Open
Abstract
The brain functional network extracted from the BOLD signals reveals the correlated activity of the different brain regions, which is hypothesized to underlie the integration of the information across functionally specialized areas. Functional networks are not static and change over time and in different brain states, enabling the nervous system to engage and disengage different local areas in specific tasks on demand. Due to the low temporal resolution, however, BOLD signals do not allow the exploration of spectral properties of the brain dynamics over different frequency bands which are known to be important in cognitive processes. Recent studies using imaging tools with a high temporal resolution has made it possible to explore the correlation between the regions at multiple frequency bands. These studies introduce the frequency as a new dimension over which the functional networks change, enabling brain networks to transmit multiplex of information at any time. In this computational study, we explore the functional connectivity at different frequency ranges and highlight the role of the distance between the nodes in their correlation. We run the generalized Kuramoto model with delayed interactions on top of the brain's connectome and show that how the transmission delay and the strength of the connections, affect the correlation between the pair of nodes over different frequency bands.
Collapse
Affiliation(s)
- Abolfazl Ziaeemehr
- Department of Physics, Institute of Advanced Studies in Basic Sciences, Zanjan, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute of Advanced Studies in Basic Sciences, Zanjan, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| |
Collapse
|
16
|
Schmidt H, Hahn G, Deco G, Knösche TR. Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays. PLoS Comput Biol 2021; 17:e1007858. [PMID: 33556058 PMCID: PMC7895385 DOI: 10.1371/journal.pcbi.1007858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 02/19/2021] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Axonal connections are widely regarded as faithful transmitters of neuronal signals with fixed delays. The reasoning behind this is that extracellular potentials caused by spikes travelling along axons are too small to have an effect on other axons. Here we devise a computational framework that allows us to study the effect of extracellular potentials generated by spike volleys in axonal fibre bundles on axonal transmission delays. We demonstrate that, although the extracellular potentials generated by single spikes are of the order of microvolts, the collective extracellular potential generated by spike volleys can reach several millivolts. As a consequence, the resulting depolarisation of the axonal membranes increases the velocity of spikes, and therefore reduces axonal delays between brain areas. Driving a neural mass model with such spike volleys, we further demonstrate that only ephaptic coupling can explain the reduction of stimulus latencies with increased stimulus intensities, as observed in many psychological experiments. Axonal fibre bundles that connect distant cortical areas contain millions of densely packed axons. When synchronous spike volleys travel through such fibre bundles, the extracellular potential within the bundles is perturbed. We use computer simulations to examine the magnitude and shape of this perturbation, and demonstrate that it is sufficiently strong to affect axonal transmission speeds. Since most spikes within a spike volley are positioned in an area where the extracellular potential is negative (relative to a distant reference), the resulting depolarisation of the axonal membranes accelerates the spike volley on average. This finding is in contrast to previous studies of ephaptic coupling effects between axons, where ephaptic coupling was found to slow down spike propagation. Our finding has consequences for information transmission and synchronisation between cortical areas.
Collapse
Affiliation(s)
- Helmut Schmidt
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- * E-mail:
| | - Gerald Hahn
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Ilmenau, Germany
| |
Collapse
|
17
|
Kim CM, Egert U, Kumar A. Dynamics of multiple interacting excitatory and inhibitory populations with delays. Phys Rev E 2020; 102:022308. [PMID: 32942361 DOI: 10.1103/physreve.102.022308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/15/2020] [Indexed: 11/07/2022]
Abstract
A network consisting of excitatory and inhibitory (EI) neurons is a canonical model for understanding local cortical network activity. In this study, we extended the local circuit model and investigated how its dynamical landscape can be enriched when it interacts with another excitatory (E) population with long transmission delays. Through analysis of a rate model and numerical simulations of a corresponding network of spiking neurons, we studied the transition from stationary to oscillatory states by analyzing the Hopf bifurcation structure in terms of two network parameters: (1) transmission delay between the EI subnetwork and the E population and (2) inhibitory couplings that induced oscillatory activity in the EI subnetwork. We found that the critical coupling strength can strongly modulate as a function of transmission delay, and consequently the stationary state can be interwoven intricately with the oscillatory state. Such a dynamical landscape gave rise to an isolated stationary state surrounded by multiple oscillatory states that generated different frequency modes, and cross-frequency coupling developed naturally at the bifurcation points. We identified the network motifs with short- and long-range inhibitory connections that underlie the emergence of oscillatory states with multiple frequencies. Thus, we provided a mechanistic explanation of how the transmission delay to and from the additional E population altered the dynamical landscape. In summary, our results demonstrated the potential role of long-range connections in shaping the network activity of local cortical circuits.
Collapse
Affiliation(s)
| | - Ulrich Egert
- Bernstein Center Freiburg, 79104 Freiburg, Germany.,Biomicrotechnology, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Arvind Kumar
- Bernstein Center Freiburg, 79104 Freiburg, Germany.,Department of Computational Science and Technology, School for Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Lindstedtsvägen 3, 11428 Stockholm, Sweden
| |
Collapse
|
18
|
Allegra Mascaro AL, Falotico E, Petkoski S, Pasquini M, Vannucci L, Tort-Colet N, Conti E, Resta F, Spalletti C, Ramalingasetty ST, von Arnim A, Formento E, Angelidis E, Blixhavn CH, Leergaard TB, Caleo M, Destexhe A, Ijspeert A, Micera S, Laschi C, Jirsa V, Gewaltig MO, Pavone FS. Experimental and Computational Study on Motor Control and Recovery After Stroke: Toward a Constructive Loop Between Experimental and Virtual Embodied Neuroscience. Front Syst Neurosci 2020; 14:31. [PMID: 32733210 PMCID: PMC7359878 DOI: 10.3389/fnsys.2020.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke. To this aim, we propose an approach that allows continuous integration of new experimental data into a computational modeling framework. First, results show that we could reproduce experimental object displacement with high accuracy via the simulated embodiment in the virtual world by feeding a spinal cord model with experimental registration of the cortical activity. Second, by using computational models of multiple granularities, our preliminary results show the possibility of simulating several features of the brain after stroke, from the local alteration in neuronal activity to long-range connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We further suggest that additional models could be integrated into the framework thanks to the versatility of the proposed approach, thus allowing many researchers to achieve continuously improved experimental design.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa, Italy.,European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Egidio Falotico
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Spase Petkoski
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
| | - Maria Pasquini
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Lorenzo Vannucci
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Núria Tort-Colet
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | | | | | - Emanuele Formento
- Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Emmanouil Angelidis
- Fortiss GmbH, Munich, Germany.,Chair of Robotics, Artificial Intelligence and Embedded Systems, Department of Informatics, Technical University of Munich, Munich, Germany
| | | | | | - Matteo Caleo
- Neuroscience Institute, National Research Council, Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alain Destexhe
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Cecilia Laschi
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Viktor Jirsa
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
| | - Marc-Oliver Gewaltig
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| |
Collapse
|
19
|
Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy. J Neurosci 2020; 40:5572-5588. [PMID: 32513827 PMCID: PMC7363471 DOI: 10.1523/jneurosci.0905-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Drug-resistant focal epilepsy is a large-scale brain networks disorder characterized by altered spatiotemporal patterns of functional connectivity (FC), even during interictal resting state (RS). Although RS-FC-based metrics can detect these changes, results from RS functional magnetic resonance imaging (RS-fMRI) studies are unclear and difficult to interpret, and the underlying dynamical mechanisms are still largely unknown. To better capture the RS dynamics, we phenomenologically extended the neural mass model of partial seizures, the Epileptor, by including two neuron subpopulations of epileptogenic and nonepileptogenic type, making it capable of producing physiological oscillations in addition to the epileptiform activity. Using the neuroinformatics platform The Virtual Brain, we reconstructed 14 epileptic and 5 healthy human (of either sex) brain network models (BNMs), based on individual anatomical connectivity and clinically defined epileptogenic heatmaps. Through systematic parameter exploration and fitting to neuroimaging data, we demonstrated that epileptic brains during interictal RS are associated with lower global excitability induced by a shift in the working point of the model, indicating that epileptic brains operate closer to a stable equilibrium point than healthy brains. Moreover, we showed that functional networks are unaffected by interictal spikes, corroborating previous experimental findings; additionally, we observed higher excitability in epileptogenic regions, in agreement with the data. We shed light on new dynamical mechanisms responsible for altered RS-FC in epilepsy, involving the following two key factors: (1) a shift of excitability of the whole brain leading to increased stability; and (2) a locally increased excitability in the epileptogenic regions supporting the mixture of hyperconnectivity and hypoconnectivity in these areas. SIGNIFICANCE STATEMENT Advances in functional neuroimaging provide compelling evidence for epilepsy-related brain network alterations, even during the interictal resting state (RS). However, the dynamical mechanisms underlying these changes are still elusive. To identify local and network processes behind the RS-functional connectivity (FC) spatiotemporal patterns, we systematically manipulated the local excitability and the global coupling in the virtual human epileptic patient brain network models (BNMs), complemented by the analysis of the impact of interictal spikes and fitting to the neuroimaging data. Our results suggest that a global shift of the dynamic working point of the brain model, coupled with locally hyperexcitable node dynamics of the epileptogenic networks, provides a mechanistic explanation of the epileptic processes during the interictal RS period. These, in turn, are associated with the changes in FC.
Collapse
|
20
|
Bick C, Goodfellow M, Laing CR, Martens EA. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2020; 10:9. [PMID: 32462281 PMCID: PMC7253574 DOI: 10.1186/s13408-020-00086-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 05/07/2020] [Indexed: 05/03/2023]
Abstract
Many biological and neural systems can be seen as networks of interacting periodic processes. Importantly, their functionality, i.e., whether these networks can perform their function or not, depends on the emerging collective dynamics of the network. Synchrony of oscillations is one of the most prominent examples of such collective behavior and has been associated both with function and dysfunction. Understanding how network structure and interactions, as well as the microscopic properties of individual units, shape the emerging collective dynamics is critical to find factors that lead to malfunction. However, many biological systems such as the brain consist of a large number of dynamical units. Hence, their analysis has either relied on simplified heuristic models on a coarse scale, or the analysis comes at a huge computational cost. Here we review recently introduced approaches, known as the Ott-Antonsen and Watanabe-Strogatz reductions, allowing one to simplify the analysis by bridging small and large scales. Thus, reduced model equations are obtained that exactly describe the collective dynamics for each subpopulation in the oscillator network via few collective variables only. The resulting equations are next-generation models: Rather than being heuristic, they exactly link microscopic and macroscopic descriptions and therefore accurately capture microscopic properties of the underlying system. At the same time, they are sufficiently simple to analyze without great computational effort. In the last decade, these reduction methods have become instrumental in understanding how network structure and interactions shape the collective dynamics and the emergence of synchrony. We review this progress based on concrete examples and outline possible limitations. Finally, we discuss how linking the reduced models with experimental data can guide the way towards the development of new treatment approaches, for example, for neurological disease.
Collapse
Affiliation(s)
- Christian Bick
- Centre for Systems, Dynamics, and Control, University of Exeter, Exeter, UK.
- Department of Mathematics, University of Exeter, Exeter, UK.
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK.
- Mathematical Institute, University of Oxford, Oxford, UK.
- Institute for Advanced Study, Technische Universität München, Garching, Germany.
| | - Marc Goodfellow
- Department of Mathematics, University of Exeter, Exeter, UK
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK
| | - Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Erik A Martens
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark.
- Department of Biomedical Science, University of Copenhagen, Copenhagen N, Denmark.
- Centre for Translational Neuroscience, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
21
|
Daini D, Ceccarelli G, Cataldo E, Jirsa V. Spherical-harmonics mode decomposition of neural field equations. Phys Rev E 2020; 101:012202. [PMID: 32069532 DOI: 10.1103/physreve.101.012202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Large-scale neural networks can be described in the spatial continuous limit by neural field equations. For large-scale brain networks, the connectivity is typically translationally variant and imposes a large computational burden upon simulations. To reduce this burden, we take a semiquantitative approach and study the dynamics of neural fields described by a delayed integrodifferential equation. We decompose the connectivity into spatially variant and invariant contributions, which typically comprise the short- and long-range fiber systems, respectively. The neural fields are mapped on the two-dimensional spherical surface, which is choice consistent with routine mappings of cortical surfaces. Then, we perform mathematically a mode decomposition of the neural field equation into spherical harmonic basis functions. A spatial truncation of the leading orders at low wave number is consistent with the spatially coherent pattern formation of large-scale patterns observed in simulations and empirical brain imaging data and leads to a low-dimensional representation of the dynamics of the neural fields, bearing promise for an acceleration of the numerical simulations by orders of magnitude.
Collapse
Affiliation(s)
- Daniele Daini
- UMR Inserm 1106, Aix-Marseille Université, Faculté de Médecine, 27, Boulevard Jean Moulin, 13005 Marseille, France
| | - Giacomo Ceccarelli
- Physics Department, Largo B. Pontecorvo 3, University of Pisa, 56127 Pisa, Italy
| | - Enrico Cataldo
- Physics Department, Largo B. Pontecorvo 3, University of Pisa, 56127 Pisa, Italy
| | - Viktor Jirsa
- UMR Inserm 1106, Aix-Marseille Université, Faculté de Médecine, 27, Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
22
|
Finger H, Gast R, Gerloff C, Engel AK, König P. Probing neural networks for dynamic switches of communication pathways. PLoS Comput Biol 2019; 15:e1007551. [PMID: 31841504 PMCID: PMC6936858 DOI: 10.1371/journal.pcbi.1007551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/30/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Dynamic communication and routing play important roles in the human brain in order to facilitate flexibility in task solving and thought processes. Here, we present a network perturbation methodology that allows investigating dynamic switching between different network pathways based on phase offsets between two external oscillatory drivers. We apply this method in a computational model of the human connectome with delay-coupled neural masses. To analyze dynamic switching of pathways, we define four new metrics that measure dynamic network response properties for pairs of stimulated nodes. Evaluating these metrics for all network pathways, we found a broad spectrum of pathways with distinct dynamic properties and switching behaviors. We show that network pathways can have characteristic timescales and thus specific preferences for the phase lag between the regions they connect. Specifically, we identified pairs of network nodes whose connecting paths can either be (1) insensitive to the phase relationship between the node pair, (2) turned on and off via changes in the phase relationship between the node pair, or (3) switched between via changes in the phase relationship between the node pair. Regarding the latter, we found that 33% of node pairs can switch their communication from one pathway to another depending on their phase offsets. This reveals a potential mechanistic role that phase offsets and coupling delays might play for the dynamic information routing via communication pathways in the brain. A big challenge in elucidating information processing in the brain is to understand the neural mechanisms that dynamically organize the communication between different brain regions in a flexible and task-dependent manner. In this theoretical study, we present an approach to investigate the routing and gating of information flow along different pathways from one region to another. We show that stimulation of the brain at two sites with different frequencies and oscillatory phases can reveal the underlying effective connectivity. This yields new insights into the underlying processes that govern dynamic switches in the communication pathways between remote sites of the brain.
Collapse
Affiliation(s)
- Holger Finger
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
- * E-mail:
| | - Richard Gast
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
- MPI for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter König
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
23
|
Petkoski S, Jirsa VK. Transmission time delays organize the brain network synchronization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180132. [PMID: 31329065 PMCID: PMC6661323 DOI: 10.1098/rsta.2018.0132] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2019] [Indexed: 05/26/2023]
Abstract
The timing of activity across brain regions can be described by its phases for oscillatory processes, and is of crucial importance for brain functioning. The structure of the brain constrains its dynamics through the delays due to propagation and the strengths of the white matter tracts. We use self-sustained delay-coupled, non-isochronous, nonlinearly damped and chaotic oscillators to study how spatio-temporal organization of the brain governs phase lags between the coherent activity of its regions. In silico results for the brain network model demonstrate a robust switching from in- to anti-phase synchronization by increasing the frequency, with a consistent lagging of the stronger connected regions. Relative phases are well predicted by an earlier analysis of Kuramoto oscillators, confirming the spatial heterogeneity of time delays as a crucial mechanism in shaping the functional brain architecture. Increased frequency and coupling are also shown to distort the oscillators by decreasing their amplitude, and stronger regions have lower, but more synchronized activity. These results indicate specific features in the phase relationships within the brain that need to hold for a wide range of local oscillatory dynamics, given that the time delays of the connectome are proportional to the lengths of the structural pathways. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.
Collapse
Affiliation(s)
| | - Viktor K. Jirsa
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix Marseille Univ, Marseille, France
| |
Collapse
|
24
|
Stefanovski L, Triebkorn P, Spiegler A, Diaz-Cortes MA, Solodkin A, Jirsa V, McIntosh AR, Ritter P. Linking Molecular Pathways and Large-Scale Computational Modeling to Assess Candidate Disease Mechanisms and Pharmacodynamics in Alzheimer's Disease. Front Comput Neurosci 2019; 13:54. [PMID: 31456676 PMCID: PMC6700386 DOI: 10.3389/fncom.2019.00054] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction: While the prevalence of neurodegenerative diseases associated with dementia such as Alzheimer's disease (AD) increases, our knowledge on the underlying mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we demonstrate how computational multi-scale brain modeling links phenomena of different scales and therefore identifies potential disease mechanisms leading the way to improved diagnostics and treatment. Methods: The Virtual Brain (TVB; thevirtualbrain.org) neuroinformatics platform allows standardized large-scale structural connectivity-based simulations of whole brain dynamics. We provide proof of concept for a novel approach that quantitatively links the effects of altered molecular pathways onto neuronal population dynamics. As a novelty, we connect chemical compounds measured with positron emission tomography (PET) with neural function in TVB addressing the phenomenon of hyperexcitability in AD related to the protein amyloid beta (Abeta). We construct personalized virtual brains based on an averaged healthy connectome and individual PET derived distributions of Abeta in patients with mild cognitive impairment (MCI, N = 8) and Alzheimer's Disease (AD, N = 10) and in age-matched healthy controls (HC, N = 15) using data from ADNI-3 data base (http://adni.loni.usc.edu). In the personalized virtual brains, individual Abeta burden modulates regional Excitation-Inhibition balance, leading to local hyperexcitation with high Abeta loads. We analyze simulated regional neural activity and electroencephalograms (EEG). Results: Known empirical alterations of EEG in patients with AD compared to HCs were reproduced by simulations. The virtual AD group showed slower frequencies in simulated local field potentials and EEG compared to MCI and HC groups. The heterogeneity of the Abeta load is crucial for the virtual EEG slowing which is absent for control models with homogeneous Abeta distributions. Slowing phenomena primarily affect the network hubs, independent of the spatial distribution of Abeta. Modeling the N-methyl-D-aspartate (NMDA) receptor antagonism of memantine in local population models, reveals potential functional reversibility of the observed large-scale alterations (reflected by EEG slowing) in virtual AD brains. Discussion: We demonstrate how TVB enables the simulation of systems effects caused by pathogenetic molecular candidate mechanisms in human virtual brains.
Collapse
Affiliation(s)
- Leon Stefanovski
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul Triebkorn
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Andreas Spiegler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Margarita-Arimatea Diaz-Cortes
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institut für Informatik, Freie Universität Berlin, Berlin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | | | - Petra Ritter
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | | |
Collapse
|
25
|
Lagarde S, Roehri N, Lambert I, Trebuchon A, McGonigal A, Carron R, Scavarda D, Milh M, Pizzo F, Colombet B, Giusiano B, Medina Villalon S, Guye M, Bénar CG, Bartolomei F. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 2019; 141:2966-2980. [PMID: 30107499 DOI: 10.1093/brain/awy214] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Drug-refractory focal epilepsies are network diseases associated with functional connectivity alterations both during ictal and interictal periods. A large majority of studies on the interictal/resting state have focused on functional MRI-based functional connectivity. Few studies have used electrophysiology, despite its high temporal capacities. In particular, stereotactic-EEG is highly suitable to study functional connectivity because it permits direct intracranial electrophysiological recordings with relative large-scale sampling. Most previous studies in stereotactic-EEG have been directed towards temporal lobe epilepsy, which does not represent the whole spectrum of drug-refractory epilepsies. The present study aims at filling this gap, investigating interictal functional connectivity alterations behind cortical epileptic organization and its association with post-surgical prognosis. To this purpose, we studied a large cohort of 59 patients with malformation of cortical development explored by stereotactic-EEG with a wide spatial sampling (76 distinct brain areas were recorded, median of 13.2 per patient). We computed functional connectivity using non-linear correlation. We focused on three zones defined by stereotactic-EEG ictal activity: the epileptogenic zone, the propagation zone and the non-involved zone. First, we compared within-zone and between-zones functional connectivity. Second, we analysed the directionality of functional connectivity between these zones. Third, we measured the associations between functional connectivity measures and clinical variables, especially post-surgical prognosis. Our study confirms that functional connectivity differs according to the zone under investigation. We found: (i) a gradual decrease of the within-zone functional connectivity with higher values for epileptogenic zone and propagation zone, and lower for non-involved zones; (ii) preferential coupling between structures of the epileptogenic zone; (iii) preferential coupling between epileptogenic zone and propagation zone; and (iv) poorer post-surgical outcome in patients with higher functional connectivity of non-involved zone (within- non-involved zone, between non-involved zone and propagation zone functional connectivity). Our work suggests that, even during the interictal state, functional connectivity is reinforced within epileptic cortices (epileptogenic zone and propagation zone) with a gradual organization. Moreover, larger functional connectivity alterations, suggesting more diffuse disease, are associated with poorer post-surgical prognosis. This is consistent with computational studies suggesting that connectivity is crucial in order to model the spatiotemporal dynamics of seizures.10.1093/brain/awy214_video1awy214media15833456182001.
Collapse
Affiliation(s)
- Stanislas Lagarde
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Nicolas Roehri
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Isabelle Lambert
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Agnès Trebuchon
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Aileen McGonigal
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Paediatric Neurosurgery, Marseille, France
| | - Mathieu Milh
- APHM, Timone Hospital, Paediatric Neurology, Marseille, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bruno Colombet
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Maxime Guye
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Christian-G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
26
|
Synchronization dependent on spatial structures of a mesoscopic whole-brain network. PLoS Comput Biol 2019; 15:e1006978. [PMID: 31013267 PMCID: PMC6499430 DOI: 10.1371/journal.pcbi.1006978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/03/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
Complex structural connectivity of the mammalian brain is believed to underlie the versatility of neural computations. Many previous studies have investigated properties of small subsystems or coarse connectivity among large brain regions that are often binarized and lack spatial information. Yet little is known about spatial embedding of the detailed whole-brain connectivity and its functional implications. We focus on closing this gap by analyzing how spatially-constrained neural connectivity shapes synchronization of the brain dynamics based on a system of coupled phase oscillators on a mammalian whole-brain network at the mesoscopic level. This was made possible by the recent development of the Allen Mouse Brain Connectivity Atlas constructed from viral tracing experiments together with a new mapping algorithm. We investigated whether the network can be compactly represented based on the spatial dependence of the network topology. We found that the connectivity has a significant spatial dependence, with spatially close brain regions strongly connected and distal regions weakly connected, following a power law. However, there are a number of residuals above the power-law fit, indicating connections between brain regions that are stronger than predicted by the power-law relationship. By measuring the sensitivity of the network order parameter, we show how these strong connections dispersed across multiple spatial scales of the network promote rapid transitions between partial synchronization and more global synchronization as the global coupling coefficient changes. We further demonstrate the significance of the locations of the residual connections, suggesting a possible link between the network complexity and the brain’s exceptional ability to swiftly switch computational states depending on stimulus and behavioral context. In a previous study, a data-driven large-scale model of mouse brain connectivity was constructed. This mouse brain connectivity model is estimated by a simplified model which only takes in account anatomy and distance dependence of connection strength which is best fit by a power law. The distance dependence model captures the connection strengths of the mouse whole-brain network well. But can it capture the dynamics? In this study, we show that a small number of connections which are missed by the simple spatial model lead to significant differences in dynamics. The presence of a small number of strong connections over longer distances increases sensitivity of synchronization to perturbations. Unlike the data-driven network, the network without these long-range connections, as well as the network in which these long range connections are shuffled, lose global synchronization while maintaining localized synchrony, underlining the significance of the exact topology of these distal connections in the data-driven brain network.
Collapse
|
27
|
O'Neill GC, Tewarie P, Vidaurre D, Liuzzi L, Woolrich MW, Brookes MJ. Dynamics of large-scale electrophysiological networks: A technical review. Neuroimage 2018; 180:559-576. [PMID: 28988134 DOI: 10.1016/j.neuroimage.2017.10.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
For several years it has been argued that neural synchronisation is crucial for cognition. The idea that synchronised temporal patterns between different neural groups carries information above and beyond the isolated activity of these groups has inspired a shift in focus in the field of functional neuroimaging. Specifically, investigation into the activation elicited within certain regions by some stimulus or task has, in part, given way to analysis of patterns of co-activation or functional connectivity between distal regions. Recently, the functional connectivity community has been looking beyond the assumptions of stationarity that earlier work was based on, and has introduced methods to incorporate temporal dynamics into the analysis of connectivity. In particular, non-invasive electrophysiological data (magnetoencephalography/electroencephalography (MEG/EEG)), which provides direct measurement of whole-brain activity and rich temporal information, offers an exceptional window into such (potentially fast) brain dynamics. In this review, we discuss challenges, solutions, and a collection of analysis tools that have been developed in recent years to facilitate the investigation of dynamic functional connectivity using these imaging modalities. Further, we discuss the applications of these approaches in the study of cognition and neuropsychiatric disorders. Finally, we review some existing developments that, by using realistic computational models, pursue a deeper understanding of the underlying causes of non-stationary connectivity.
Collapse
Affiliation(s)
- George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lucrezia Liuzzi
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
28
|
Trebaul L, Deman P, Tuyisenge V, Jedynak M, Hugues E, Rudrauf D, Bhattacharjee M, Tadel F, Chanteloup-Foret B, Saubat C, Reyes Mejia GC, Adam C, Nica A, Pail M, Dubeau F, Rheims S, Trébuchon A, Wang H, Liu S, Blauwblomme T, Garcés M, De Palma L, Valentin A, Metsähonkala EL, Petrescu AM, Landré E, Szurhaj W, Hirsch E, Valton L, Rocamora R, Schulze-Bonhage A, Mindruta I, Francione S, Maillard L, Taussig D, Kahane P, David O. Probabilistic functional tractography of the human cortex revisited. Neuroimage 2018; 181:414-429. [PMID: 30025851 PMCID: PMC6150949 DOI: 10.1016/j.neuroimage.2018.07.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/21/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022] Open
Abstract
In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
Collapse
Affiliation(s)
- Lena Trebaul
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Pierre Deman
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Viateur Tuyisenge
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Maciej Jedynak
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Etienne Hugues
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - David Rudrauf
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Manik Bhattacharjee
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - François Tadel
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Blandine Chanteloup-Foret
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Carole Saubat
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Gina Catalina Reyes Mejia
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Claude Adam
- Epilepsy Unit, Dept of Neurology, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Anca Nica
- Neurology Department, CHU, Rennes, France
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - François Dubeau
- Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Agnès Trébuchon
- Service de Neurophysiologie Clinique, APHM, Hôpitaux de la Timone, Marseille, France
| | - Haixiang Wang
- Yuquan Hospital Epilepsy Center, Tsinghua University, Beijing, China
| | - Sinclair Liu
- Canton Sanjiu Brain Hospital Epilepsy Center, Jinan University, Guangzhou, China
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Université Paris V Descartes, Sorbonne Paris Cité, Paris, France
| | - Mercedes Garcés
- Multidisciplinary Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luca De Palma
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, UK
| | | | | | | | - William Szurhaj
- Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Edouard Hirsch
- University Hospital, Department of Neurology, Strasbourg, France
| | - Luc Valton
- University Hospital, Department of Neurology, Toulouse, France
| | - Rodrigo Rocamora
- Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ioana Mindruta
- Neurology Department, University Emergency Hospital, Bucharest, Romania
| | | | - Louis Maillard
- Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Delphine Taussig
- Service de neurochirurgie pédiatrique, Fondation Rothschild, Paris, France
| | - Philippe Kahane
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France; CHU Grenoble Alpes, Neurology Department, Grenoble, France
| | - Olivier David
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
| |
Collapse
|
29
|
Petkoski S, Palva JM, Jirsa VK. Phase-lags in large scale brain synchronization: Methodological considerations and in-silico analysis. PLoS Comput Biol 2018; 14:e1006160. [PMID: 29990339 PMCID: PMC6039010 DOI: 10.1371/journal.pcbi.1006160] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/29/2018] [Indexed: 01/24/2023] Open
Abstract
Architecture of phase relationships among neural oscillations is central for their functional significance but has remained theoretically poorly understood. We use phenomenological model of delay-coupled oscillators with increasing degree of topological complexity to identify underlying principles by which the spatio-temporal structure of the brain governs the phase lags between oscillatory activity at distant regions. Phase relations and their regions of stability are derived and numerically confirmed for two oscillators and for networks with randomly distributed or clustered bimodal delays, as a first approximation for the brain structural connectivity. Besides in-phase, clustered delays can induce anti-phase synchronization for certain frequencies, while the sign of the lags is determined by the natural frequencies and by the inhomogeneous network interactions. For in-phase synchronization faster oscillators always phase lead, while stronger connected nodes lag behind the weaker during frequency depression, which consistently arises for in-silico results. If nodes are in anti-phase regime, then a distance π is added to the in-phase trends. The statistics of the phases is calculated from the phase locking values (PLV), as in many empirical studies, and we scrutinize the method’s impact. The choice of surrogates do not affects the mean of the observed phase lags, but higher significance levels that are generated by some surrogates, cause decreased variance and might fail to detect the generally weaker coherence of the interhemispheric links. These links are also affected by the non-stationary and intermittent synchronization, which causes multimodal phase lags that can be misleading if averaged. Taken together, the results describe quantitatively the impact of the spatio-temporal connectivity of the brain to the synchronization patterns between brain regions, and to uncover mechanisms through which the spatio-temporal structure of the brain renders phases to be distributed around 0 and π. Trial registration: South African Clinical Trials Register: http://www.sanctr.gov.za/SAClinicalbrnbspTrials/tabid/169/Default.aspx, then link to respiratory tract then link to tuberculosis, pulmonary; and TASK Applied Sciences Clinical Trials, AP-TB-201-16 (ALOPEXX): https://task.org.za/clinical-trials/. Functional connectivity, and in particular, phase coupling between distant brain regions may be fundamental in regulating neuronal processing and communication. However, phase relationships between the nodes of the brain and how they are confined by its spatio-temporal structure, have been mostly overlooked. We use a model of oscillatory dynamics superimposed on the space-time structure defined by the connectome, and we analyze the possible regimes of synchronization. Limitations of data analysis are also considered and we show that the choice of the significance threshold for coherence does not essentially impact the statistics of the observed phase lags, although it is crucial for the right detection of statistically significant coherence. Analytical insights are obtained for networks with heterogeneous time-delays, based on the empirical data from the connectome, and these are confirmed by numerical simulations, which show in- or anti-phase synchronization depending on the frequency and the distribution of time-delays. Phase lags are shown to result from inhomogeneous network interactions, so that stronger connected nodes generally phase lag behind the weaker.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
- * E-mail: (SP); (VKJ)
| | - J. Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Viktor K. Jirsa
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
- * E-mail: (SP); (VKJ)
| |
Collapse
|
30
|
Montbrió E, Pazó D. Kuramoto Model for Excitation-Inhibition-Based Oscillations. PHYSICAL REVIEW LETTERS 2018; 120:244101. [PMID: 29956946 DOI: 10.1103/physrevlett.120.244101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Indexed: 06/08/2023]
Abstract
The Kuramoto model (KM) is a theoretical paradigm for investigating the emergence of rhythmic activity in large populations of oscillators. A remarkable example of rhythmogenesis is the feedback loop between excitatory (E) and inhibitory (I) cells in large neuronal networks. Yet, although the EI-feedback mechanism plays a central role in the generation of brain oscillations, it remains unexplored whether the KM has enough biological realism to describe it. Here we derive a two-population KM that fully accounts for the onset of EI-based neuronal rhythms and that, as the original KM, is analytically solvable to a large extent. Our results provide a powerful theoretical tool for the analysis of large-scale neuronal oscillations.
Collapse
Affiliation(s)
- Ernest Montbrió
- Center for Brain and Cognition. Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| | - Diego Pazó
- Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, 39005 Santander, Spain
| |
Collapse
|
31
|
Proix T, Jirsa VK, Bartolomei F, Guye M, Truccolo W. Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat Commun 2018. [PMID: 29540685 PMCID: PMC5852068 DOI: 10.1038/s41467-018-02973-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies have shown that seizures can spread and terminate across brain areas via a rich diversity of spatiotemporal patterns. In particular, while the location of the seizure onset area is usually invariant across seizures in an individual patient, the source of traveling (2–3 Hz) spike-and-wave discharges during seizures can either move with the slower propagating ictal wavefront or remain stationary at the seizure onset area. Furthermore, although many focal seizures terminate synchronously across brain areas, some evolve into distinct ictal clusters and terminate asynchronously. Here, we introduce a unifying perspective based on a new neural field model of epileptic seizure dynamics. Two main mechanisms, the co-existence of wave propagation in excitable media and coupled-oscillator dynamics, together with the interaction of multiple time scales, account for the reported diversity. We confirm our predictions in seizures and tractography data obtained from patients with pharmacologically resistant epilepsy. Our results contribute toward patient-specific seizure modeling. A major goal of epilepsy research is understanding the spatiotemporal dynamics of seizure. Here, the authors extend the Epileptor neural mass model into a neural field model, in order to provide a unified and patient-specific model of seizure initiation, propagation, and termination.
Collapse
Affiliation(s)
- Timothée Proix
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA.,Institute for Brain Science, Brown University, Providence, RI, 02912, USA.,Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, 02912, USA
| | - Viktor K Jirsa
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix Marseille Univ, Marseille, 13005, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix Marseille Univ, Marseille, 13005, France
| | - Maxime Guye
- CNRS, CRMBM UMR 7339, Aix Marseille Univ, Marseille, 13005, France
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA. .,Institute for Brain Science, Brown University, Providence, RI, 02912, USA. .,Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, 02912, USA.
| |
Collapse
|
32
|
Abeysuriya RG, Hadida J, Sotiropoulos SN, Jbabdi S, Becker R, Hunt BAE, Brookes MJ, Woolrich MW. A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks. PLoS Comput Biol 2018; 14:e1006007. [PMID: 29474352 PMCID: PMC5841816 DOI: 10.1371/journal.pcbi.1006007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/07/2018] [Accepted: 01/28/2018] [Indexed: 01/03/2023] Open
Abstract
Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP.
Collapse
Affiliation(s)
- Romesh G. Abeysuriya
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
| | - Jonathan Hadida
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Stamatios N. Sotiropoulos
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham
| | - Saad Jbabdi
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Robert Becker
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
| | - Benjamin A. E. Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, United Kingdom
- Department of Diagnostic Imaging, Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, United Kingdom
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| |
Collapse
|
33
|
Wagemakers A, Sanjuán MAF. A new method to reduce the number of time delays in a network. Sci Rep 2017; 7:2744. [PMID: 28577339 PMCID: PMC5457449 DOI: 10.1038/s41598-017-02978-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
Time delays may cause dramatic changes to the dynamics of interacting oscillators. Coupled networks of interacting dynamical systems can have unexpected behaviours when the signal between the vertices are time delayed. It has been shown for a very general class of systems that the time delays can be rearranged as long as the total time delay over the constitutive loops of the network is conserved. This fact allows to reduce the number of time delays of the problem without loss of information. There is a theoretical lower bound for this number that can be numerically improved if the time delays are commensurable. Here we propose a formulation of the problem and a numerical method to even further reduce the number of time delays in a network.
Collapse
Affiliation(s)
- Alexandre Wagemakers
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Móstoles, Madrid, Tulipán s/n, 28933, Spain.
| | - Miguel A F Sanjuán
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Móstoles, Madrid, Tulipán s/n, 28933, Spain.,Department of Applied Informatics, Kaunas University of Technology, Studentu 50-415, Kaunas, LT-51368, Lithuania.,Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
34
|
Pillai AS, Jirsa VK. Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior. Neuron 2017; 94:1010-1026. [DOI: 10.1016/j.neuron.2017.05.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/22/2017] [Accepted: 05/05/2017] [Indexed: 01/05/2023]
|
35
|
Majhi S, Perc M, Ghosh D. Chimera states in uncoupled neurons induced by a multilayer structure. Sci Rep 2016; 6:39033. [PMID: 27958355 PMCID: PMC5153648 DOI: 10.1038/srep39033] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 01/23/2023] Open
Abstract
Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108, India
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108, India
| |
Collapse
|
36
|
Pietras B, Daffertshofer A. Ott-Antonsen attractiveness for parameter-dependent oscillatory systems. CHAOS (WOODBURY, N.Y.) 2016; 26:103101. [PMID: 27802676 DOI: 10.1063/1.4963371] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Ott-Antonsen (OA) ansatz [Ott and Antonsen, Chaos 18, 037113 (2008); Chaos 19, 023117 (2009)] has been widely used to describe large systems of coupled phase oscillators. If the coupling is sinusoidal and if the phase dynamics does not depend on the specific oscillator, then the macroscopic behavior of the systems can be fully described by a low-dimensional dynamics. Does the corresponding manifold remain attractive when introducing an intrinsic dependence between an oscillator's phase and its dynamics by additional, oscillator specific parameters? To answer this, we extended the OA ansatz and proved that parameter-dependent oscillatory systems converge to the OA manifold given certain conditions. Our proof confirms recent numerical findings that already hinted at this convergence. Furthermore, we offer a thorough mathematical underpinning for networks of so-called theta neurons, where the OA ansatz has just been applied. In a final step, we extend our proof by allowing for time-dependent and multi-dimensional parameters as well as for network topologies other than global coupling. This renders the OA ansatz an excellent starting point for the analysis of a broad class of realistic settings.
Collapse
Affiliation(s)
- Bastian Pietras
- Faculty of Behavioural and Movement Sciences, MOVE Research Institute Amsterdam and Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam 1081 BT, The Netherlands
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, MOVE Research Institute Amsterdam and Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam 1081 BT, The Netherlands
| |
Collapse
|