1
|
Dornheim T, Schwalbe S, Moldabekov ZA, Vorberger J, Tolias P. Ab Initio Path Integral Monte Carlo Simulations of the Uniform Electron Gas on Large Length Scales. J Phys Chem Lett 2024; 15:1305-1313. [PMID: 38285536 PMCID: PMC10860150 DOI: 10.1021/acs.jpclett.3c03193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
The accurate description of non-ideal quantum many-body systems is of prime importance for a host of applications within physics, quantum chemistry, materials science, and related disciplines. At finite temperatures, the gold standard is given by ab initio path integral Monte Carlo (PIMC) simulations, which do not require any empirical input but exhibit an exponential increase in the required computation time for Fermionic systems with an increase in system size N. Very recently, computing Fermionic properties without this bottleneck based on PIMC simulations of fictitious identical particles has been suggested. In our work, we use this technique to perform very large (N ≤ 1000) PIMC simulations of the warm dense electron gas and demonstrate that it is capable of providing a highly accurate description of the investigated properties, i.e., the static structure factor, the static density response function, and the local field correction, over the entire range of length scales.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Sebastian Schwalbe
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Zhandos A. Moldabekov
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Panagiotis Tolias
- Space
and Plasma Physics, Royal Institute of Technology
(KTH), Stockholm SE-100 44, Sweden
| |
Collapse
|
2
|
Dornheim T, Vorberger J. Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte Carlo simulations. Phys Rev E 2020; 102:063301. [PMID: 33466040 DOI: 10.1103/physreve.102.063301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
We systematically investigate finite-size effects in the dynamic structure factor S(q,ω) of the uniform electron gas obtained via the analytic continuation of ab initio path integral Monte Carlo data for the imaginary-time density-density correlation function F(q,τ). Using the recent scheme by Dornheim et al. [Phys. Rev. Lett. 121, 255001 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255001], we find that the reconstructed spectra are not afflicted with any finite-size effects for as few as N=14 electrons both at warm dense matter (WDM) conditions and at the margins of the strongly correlated electron liquid regime. Our results further corroborate the high quality of our current description of the dynamic density response of correlated electrons, which is of high importance for many applications in WDM theory and beyond.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
3
|
Shaffer NR, Starrett CE. Model of electron transport in dense plasmas spanning temperature regimes. Phys Rev E 2020; 101:053204. [PMID: 32575252 DOI: 10.1103/physreve.101.053204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022]
Abstract
We present a new model of electron transport in warm and hot dense plasmas which combines the quantum Landau-Fokker-Planck equation with the concept of mean-force scattering. We obtain electrical and thermal conductivities across several orders of magnitude in temperature, from warm dense matter conditions to hot, nondegenerate plasma conditions, including the challenging crossover regime between the two. The small-angle approximation characteristic of Fokker-Planck collision theories is mitigated to good effect by the construction of accurate effective Coulomb logarithms based on mean-force scattering, which allows the theory to remain accurate even at low temperatures, as compared with high-fidelity quantum simulation results. Electron-electron collisions are treated on equal footing as electron-ion collisions. Their accurate treatment is found to be essential for hydrogen, and is expected to be important to other low-Z elements. We find that electron-electron scattering remains influential to the value of the thermal conductivity down to temperatures somewhat below the Fermi energy. The accuracy of the theory seems to falter only for the behavior of the thermal conductivity at very low temperatures due to a subtle interplay between the Pauli exclusion principle and the small-angle approximation as they pertain to electron-electron scattering. Even there, the model is in fair agreement with ab initio simulations.
Collapse
|
4
|
Dornheim T, Vorberger J, Groth S, Hoffmann N, Moldabekov ZA, Bonitz M. The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation. J Chem Phys 2019; 151:194104. [DOI: 10.1063/1.5123013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- T. Dornheim
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - J. Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - N. Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Zh. A. Moldabekov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Al-Farabi Str. 71, 050040 Almaty, Kazakhstan
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|
5
|
Dornheim T, Groth S, Vorberger J, Bonitz M. Ab initio Path Integral Monte Carlo Results for the Dynamic Structure Factor of Correlated Electrons: From the Electron Liquid to Warm Dense Matter. PHYSICAL REVIEW LETTERS 2018; 121:255001. [PMID: 30608805 DOI: 10.1103/physrevlett.121.255001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The accurate description of electrons at extreme density and temperature is of paramount importance for, e.g., the understanding of astrophysical objects and inertial confinement fusion. In this context, the dynamic structure factor S(q,ω) constitutes a key quantity as it is directly measured in x-ray Thomson scattering experiments and governs transport properties like the dynamic conductivity. In this work, we present the first ab initio results for S(q,ω) by carrying out extensive path integral Monte Carlo simulations and developing a new method for the required analytic continuation, which is based on the stochastic sampling of the dynamic local field correction G(q,ω). In addition, we find that the so-called static approximation constitutes a promising opportunity to obtain high-quality data for S(q,ω) over substantial parts of the warm dense matter regime.
Collapse
Affiliation(s)
- T Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - S Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|
6
|
Moldabekov ZA, Groth S, Dornheim T, Kählert H, Bonitz M, Ramazanov TS. Structural characteristics of strongly coupled ions in a dense quantum plasma. Phys Rev E 2018; 98:023207. [PMID: 30253556 DOI: 10.1103/physreve.98.023207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 06/08/2023]
Abstract
The structural properties of strongly coupled ions in dense plasmas with moderately to strongly degenerate electrons are investigated in the framework of the one-component plasma model of ions interacting through a screened pair interaction potential. Special focus is put on the description of the electronic screening in the Singwi-Tosi-Land-Sjölander (STLS) approximation. Different cross-checks and analyses using ion potentials obtained from ground-state quantum Monte Carlo data, the random phase approximation (RPA), and existing analytical models are presented for the computation of the structural properties, such as the pair distribution and the static structure factor, of strongly coupled ions. The results are highly sensitive to the features of the screened pair interaction potential. This effect is particularly visible in the static structure factor. The applicability range of the screened potential computed from STLS is identified in terms of density and temperature of the electrons. It is demonstrated that at r_{s}>1, where r_{s} is the ratio of the mean interelectronic distance to the Bohr radius, electronic correlations beyond RPA have a nonnegligible effect on the structural properties. Additionally, the applicability of the hypernetted chain approximation for the calculation of the structural properties using the screened pair interaction potential is analyzed employing the effective coupling parameter approach.
Collapse
Affiliation(s)
- Zh A Moldabekov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi str., 050040 Almaty, Kazakhstan
| | - S Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - H Kählert
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T S Ramazanov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi str., 050040 Almaty, Kazakhstan
| |
Collapse
|
7
|
Dornheim T, Groth S, Vorberger J, Bonitz M. Permutation-blocking path-integral Monte Carlo approach to the static density response of the warm dense electron gas. Phys Rev E 2017; 96:023203. [PMID: 28950530 DOI: 10.1103/physreve.96.023203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 06/07/2023]
Abstract
The static density response of the uniform electron gas is of fundamental importance for numerous applications. Here we employ the recently developed ab initio permutation blocking path integral Monte Carlo (PB-PIMC) technique [T. Dornheim et al., New J. Phys. 17, 073017 (2015)10.1088/1367-2630/17/7/073017] to carry out extensive simulations of the harmonically perturbed electron gas at warm dense matter conditions. In particular, we investigate in detail the validity of linear response theory and demonstrate that PB-PIMC allows us to obtain highly accurate results for the static density response function and, thus, the static local field correction. A comparison with dielectric approximations to our new ab initio data reveals the need for an exact treatment of correlations. Finally, we consider a superposition of multiple perturbations and discuss the implications for the calculation of the static response function.
Collapse
Affiliation(s)
- Tobias Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Simon Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Michael Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| |
Collapse
|